login
A226871
Triangle read by rows: row n gives the first q divisors d(1), d(2), ..., d(q) of A225110(n) such that Sum_{i = 1..q} 1/d(i) is an integer.
1
1, 1, 2, 3, 6, 1, 2, 3, 6, 1, 2, 4, 7, 14, 28, 1, 2, 3, 6, 1, 2, 3, 6, 1, 2, 3, 6, 1, 2, 3, 6, 1, 2, 3, 6, 1, 2, 3, 6, 1, 2, 3, 4, 5, 6, 8, 10, 12, 15, 20, 24, 30, 40, 60, 120, 1, 2, 3, 6, 1, 2, 3, 6, 1, 2, 3, 6, 1, 2, 3, 6, 1, 2, 3, 4, 5, 6, 9, 10, 12, 15, 18
OFFSET
1,3
COMMENTS
Rows 2, 3, 5, 6, 7, ... with the divisors {1, 2, 3, 6} are identical;
rows 4, 18, 62, 67, ... with the divisors {1, 2, 4, 7, 14, 28} are identical;
...
The primitive rows are rows 1, 2, 4, 11, 16, 39, 52, 145, ... corresponding to n = 1, 6, 28, 120, 180, 496, 672, 1890, ... (see A226853).
The irregular triangle of divisors is:
[1]
[1, 2, 3, 6]
[1, 2, 3, 6]
[1, 2, 4, 7, 14, 28]
[1, 2, 3, 6]
...
EXAMPLE
Row 3 = [1, 2, 3, 6] consists of the first 4 divisors of A225110(3) = 18; 1 + 1/2 + 1/3 + 1/6 = 2 is an integer.
MAPLE
with(numtheory): print({1}):for n from 1 to 5000 do:x:=divisors(n):n1:=nops(x):s:=0:ii:=0:for q from 1 to n1 while(ii=0) do:s:=s+1/x[q]:if s=floor(s) and q>1 then ii:=1: print({seq(x[i], i=1..q)}) else fi:od:od:
CROSSREFS
Sequence in context: A107409 A268603 A377302 * A178483 A133031 A275732
KEYWORD
nonn,tabf
AUTHOR
Michel Lagneau, Jun 20 2013
STATUS
approved