login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A272517
Number of set partitions of [n] into five blocks with distinct sizes.
2
37837800, 100900800, 588107520, 2977294320, 20020160160, 164118754800, 635661248040, 3295178686800, 17741374681800, 95826446465904, 623399389674600, 2664090278249400, 13876038856379700, 71797074694745400, 375274098870636420, 2199911433079733100
OFFSET
15,1
LINKS
FORMULA
a(n) = n! * [x^n*y^5] Product_{n>=1} (1+y*x^n/n!).
MAPLE
b:= proc(n, i, t) option remember; `if`(t>i or t*(t+1)/2>n
or t*(2*i+1-t)/2<n, 0, `if`(n=0, 1, b(n, i-1, t)+
`if`(i>n, 0, b(n-i, i-1, t-1)*binomial(n, i))))
end:
a:= n-> b(n$2, 5):
seq(a(n), n=15..40);
MATHEMATICA
b[n_, i_, t_] := b[n, i, t] = If[t > i || t(t+1)/2 > n || t(2i+1-t)/2 < n, 0, If[n == 0, 1, b[n, i - 1, t] + If[i > n, 0, b[n - i, i - 1, t - 1]* Binomial[n, i]]]];
a[n_] := b[n, n, 5];
a /@ Range[15, 40] (* Jean-François Alcover, Dec 11 2020, after Alois P. Heinz *)
CROSSREFS
Column k=5 of A131632.
Sequence in context: A034645 A204054 A206196 * A246232 A248710 A376794
KEYWORD
nonn
AUTHOR
Alois P. Heinz, May 01 2016
STATUS
approved