login
A079548
Array T(m,n) = n*phi(m) - phi(mn) (m,n >= 1), read by antidiagonals.
3
0, 0, 1, 0, 0, 1, 0, 2, 1, 2, 0, 0, 0, 0, 1, 0, 4, 2, 4, 1, 4, 0, 0, 4, 0, 2, 2, 1, 0, 6, 0, 8, 2, 6, 1, 4, 0, 0, 6, 0, 0, 4, 2, 0, 3, 0, 6, 4, 12, 2, 16, 2, 8, 3, 6, 0, 0, 0, 0, 6, 0, 4, 0, 0, 2, 1, 0, 10, 4, 12, 4, 24, 2, 16, 6, 12, 1, 8, 0, 0, 10, 0, 6, 8, 0, 0, 12, 4, 2, 4, 1, 0, 12, 0, 20, 0, 18, 4, 24
OFFSET
1,8
COMMENTS
It follows from the definition that n*phi(m) - phi(mn) >= 0.
REFERENCES
József Sándor, Dragoslav S. Mitrinovic, and Borislav Crstici, Handbook of Number Theory I, Springer Science & Business Media, 2005, Chapter I, p. 9, section I.2.1.
EXAMPLE
Array begins:
m\n | 1 2 3 4 5 6 ...
----+--------------------------------
1 | 0 0 0 0 0 0 ...
2 | 1 0 2 0 4 0 ...
3 | 1 1 0 2 4 0 ...
4 | 2 0 4 0 8 0 ...
5 | 1 1 2 2 0 2 ...
6 | 4 2 6 4 16 0 ...
...
MATHEMATICA
T[m_, n_] := n*EulerPhi[m] - EulerPhi[m*n]; Table[T[m, n - m + 1], {n, 1, 14}, {m, n, 1, -1}] // Flatten (* Amiram Eldar, Apr 23 2024 *)
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
N. J. A. Sloane, Jan 24 2003
STATUS
approved