

A040159


Primes p such that x^5 = 2 has a solution mod p.


12



2, 3, 5, 7, 13, 17, 19, 23, 29, 37, 43, 47, 53, 59, 67, 73, 79, 83, 89, 97, 103, 107, 109, 113, 127, 137, 139, 149, 151, 157, 163, 167, 173, 179, 193, 197, 199, 223, 227, 229, 233, 239, 241, 251, 257, 263, 269, 277, 283, 293, 307, 313, 317, 337, 347, 349, 353
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


LINKS

T. D. Noe, Table of n, a(n) for n=1..1000
Index entries for related sequences


MATHEMATICA

ok [p_]:=Reduce[Mod[x^5 2, p]== 0, x, Integers]=!= False; Select[Prime[Range[180]], ok] (* Vincenzo Librandi, Sep 12 2012 *)


PROG

(MAGMA) [p: p in PrimesUpTo(400)  exists{x: x in ResidueClassRing(p)  x^5 eq 2}]; // Bruno Berselli, Sep 12 2012


CROSSREFS

Cf. A001132, A040028, A040098, A040160.
Has same beginning as A042991 but is strictly different.
For primes p such that x^m == 2 mod p has a solution for m = 2,3,4,5,6,7,... see A038873, A040028, A040098, A040159, A040992, A042966, ...
Sequence in context: A040978 A040982 A040980 * A040171 A040974 A049557
Adjacent sequences: A040156 A040157 A040158 * A040160 A040161 A040162


KEYWORD

nonn,easy


AUTHOR

N. J. A. Sloane.


STATUS

approved



