%I
%S 2,3,5,7,13,17,19,23,29,37,43,47,53,59,67,73,79,83,89,97,103,107,109,
%T 113,127,137,139,149,151,157,163,167,173,179,193,197,199,223,227,229,
%U 233,239,241,251,257,263,269,277,283,293,307,313,317,337,347,349,353
%N Primes p such that x^5 = 2 has a solution mod p.
%H T. D. Noe, <a href="/A040159/b040159.txt">Table of n, a(n) for n=1..1000</a>
%H <a href="/index/Pri#smp">Index entries for related sequences</a>
%t ok [p_]:=Reduce[Mod[x^5 2, p]== 0, x, Integers]=!= False; Select[Prime[Range[180]], ok] (* _Vincenzo Librandi_, Sep 12 2012 *)
%o (MAGMA) [p: p in PrimesUpTo(400)  exists{x: x in ResidueClassRing(p)  x^5 eq 2}]; // _Bruno Berselli_, Sep 12 2012
%Y Cf. A001132, A040028, A040098, A040160.
%Y Has same beginning as A042991 but is strictly different.
%Y For primes p such that x^m == 2 mod p has a solution for m = 2,3,4,5,6,7,... see A038873, A040028, A040098, A040159, A040992, A042966, ...
%K nonn,easy
%O 1,1
%A _N. J. A. Sloane_.
