

A106301


Primes that do not divide any term of the Lucas 5step sequence A074048.


2



2, 691, 3163, 4259, 5419, 6637, 6733, 14923, 25111, 27947, 29339, 34123, 34421, 34757, 42859, 55207, 57529, 59693, 61643, 68897, 70249, 75991, 82763, 83177, 85607, 86441, 87103, 93169, 93283, 98573, 106121, 106433, 114847, 129589, 132313
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

If a prime p divides a term a(k) of this sequence, then k must be less than the period of the sequence mod p. Hence these primes are found by computing A074048(k) mod p for increasing k and stopping when either A074048(k) mod p = 0 or the end of the period is reached. Interestingly, for all of these primes, the period of the sequence A074048(k) mod p appears to be (p1)/d, where d is a small integer.


LINKS

Table of n, a(n) for n=1..35.
Eric Weisstein's World of Mathematics, Fibonacci nStep


MATHEMATICA

n=5; lst={}; Table[p=Prime[i]; a=Join[Table[ 1, {n1}], {n}]; a=Mod[a, p]; a0=a; While[s=Mod[Plus@@a, p]; a=RotateLeft[a]; a[[n]]=s; !(a==a0  s==0)]; If[s>0, AppendTo[lst, p]], {i, 10000}]; lst


CROSSREFS

Cf. A053028 (primes not dividing any Lucas number), A106299 (primes not dividing any Lucas 3step number), A106300 (primes not dividing any Lucas 4step number).
Sequence in context: A140014 A188698 A209364 * A127623 A115474 A064976
Adjacent sequences: A106298 A106299 A106300 * A106302 A106303 A106304


KEYWORD

nonn


AUTHOR

T. D. Noe, May 02 2005


STATUS

approved



