login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A106294
Period of the Lucas 3-step sequence A001644 mod prime(n).
3
1, 13, 31, 48, 10, 168, 96, 360, 553, 140, 331, 469, 560, 308, 46, 52, 3541, 1860, 1519, 5113, 5328, 3120, 287, 8011, 3169, 680, 51, 1272, 990, 12883, 5376, 5720, 18907, 3864, 7400, 2850, 8269, 162, 9296, 2494, 32221, 10981, 36673, 4656, 3234, 198, 5565
OFFSET
1,2
COMMENTS
This sequence differs from the corresponding Fibonacci sequence (A106302) at n=1 and 5 because these correspond to the primes 2 and 11, which are the prime factors of -44, the discriminant of the characteristic polynomial x^3-x^2-x-1. We have a(n) < prime(n) for the primes 2, 11 and A106279.
For a prime p, the period depends on the zeros of x^3-x^2-x-1 mod p. If there are 3 zeros, then the period is < p. If there are no zeros, then the period is p^2+p+1 or a simple fraction of p^2+p+1. Also note that the period can be prime, as for p=3, 5, 31, 59, 71, 89, 97, 157, 223. When the period is prime, the orbits have a simple structure. [From T. D. Noe, Sep 18 2008]
LINKS
Eric Weisstein's World of Mathematics, Fibonacci n-Step Number
FORMULA
a(n) = A106293(prime(n)).
MATHEMATICA
n=3; Table[p=Prime[i]; a=Join[Table[ -1, {n-1}], {n}]; a=Mod[a, p]; a0=a; k=0; While[k++; s=Mod[Plus@@a, p]; a=RotateLeft[a]; a[[n]]=s; a!=a0]; k, {i, 60}]
CROSSREFS
KEYWORD
nonn
AUTHOR
T. D. Noe, May 02 2005
STATUS
approved