login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A111489
Primes of the form prime(k) + composite(k) for some k.
2
13, 31, 47, 67, 79, 89, 97, 103, 113, 149, 173, 179, 211, 223, 241, 277, 313, 349, 359, 379, 449, 457, 487, 503, 509, 631, 743, 769, 797, 809, 887, 937, 967, 1009, 1049, 1109, 1123, 1213, 1231, 1277, 1289, 1319, 1409, 1429, 1453, 1471, 1489, 1543, 1571, 1663
OFFSET
1,1
COMMENTS
Conjecture: This sequence is infinite.
LINKS
EXAMPLE
The third prime is 5, the third composite is 8, 8+5=13, the first entry.
MAPLE
Primes, Composites:= selectremove(isprime, [$2..10^4]):
select(isprime, Primes + Composites[1..nops(Primes)]); # Robert Israel, Jul 08 2016
MATHEMATICA
nn = 222; Select[Total /@ Transpose@{#, Take[Complement[Range@ Prime@ nn, {1}~Join~#], nn]} &@ Prime@ Range@ nn, PrimeQ] (* Michael De Vlieger, Jul 08 2016 *)
PROG
(PARI) composite(n)= local(c, x); c=1; x=1; while(c <= n, x++; if(!isprime(x), c++); ); return(x);
g(n)=for(x=1, n, y=prime(x)+composite(x); if(isprime(y), print1(y", ")))
(PARI) list(lim)=my(v=List(), p=5, c=8, t); while((t=p+c) <= lim, if(isprime(t), listput(v, t)); p=nextprime(p+1); if(isprime(c++), c++)); Vec(v) \\ Charles R Greathouse IV, Sep 01 2016
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Cino Hilliard, Nov 15 2005
EXTENSIONS
Name corrected by Adam Kubias, Jul 08 2016
STATUS
approved