login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A111488
Primes all of whose digits are triangular.
2
3, 11, 13, 31, 61, 101, 103, 113, 131, 163, 311, 313, 331, 601, 613, 631, 661, 1013, 1031, 1033, 1061, 1063, 1103, 1163, 1301, 1303, 1361, 1601, 1613, 1663, 3001, 3011, 3061, 3163, 3301, 3313, 3331, 3361, 3613, 3631, 6011, 6101, 6113, 6131, 6133, 6163
OFFSET
1,1
COMMENTS
Includes all repunit primes (A004022). Conjecture: an infinite sequence. Note twin primes: (11, 13), (101, 103), (311, 313), (1031, 1033), (1061, 1063), (1301, 1303), (6131, 6133), (10301, 10303), (10331, 10333), (13001, 13003).
In other words, primes with digits in the set {0,1,3,6}. - M. F. Hasler, Jul 25 2015
The number of 1's in the representation must be either 1 or 2 (mod 3), because otherwise the number would be divisible by 3 (and therefore composite). The only exception is the 3 itself. This excludes basically members of A038603. - R. J. Mathar, Jul 25 2015
LINKS
MAPLE
f:= proc(x) local L, p;
L:= subs([3=6, 2=3], convert(x, base, 4));
p:= add(L[i]*10^(i-1), i=1..nops(L));
if isprime(p) then p fi
end proc:
map(f, [$1..4^4]); # Robert Israel, Dec 18 2018
MATHEMATICA
Select[Prime@ Range@ 1000, SubsetQ[{0, 1, 3, 6}, IntegerDigits@ #] &] (* Michael De Vlieger, Jul 25 2015 *)
PROG
(PARI) A111488={(n, show=0, L=[0, 1, 3, 6])->my(t); for(d=1, 1e9, u=vector(d, i, 10^(d-i))~; forvec(v=vector(d, i, [1+(i==1&&!L[1]), #L]), ispseudoprime(t=vector(d, i, L[v[i]])*u)||next; show&print1(t", "); n--||return(t)))} \\ M. F. Hasler, Jul 25 2015
KEYWORD
base,easy,nonn
AUTHOR
Jonathan Vos Post, Nov 15 2005
EXTENSIONS
Corrected by Ray Chandler, Nov 19 2005
STATUS
approved