login
A199303
Palindromic primes in the sense of A007500 with digits '0', '1' and '3' only.
2
3, 11, 13, 31, 101, 113, 131, 311, 313, 1031, 1033, 1103, 1301, 3011, 3301, 10301, 10333, 11003, 11311, 13331, 30011, 30103, 31013, 31033, 33013, 33301, 101333, 110311, 113011, 113131, 131311, 133033, 133103, 301331, 301333, 330331, 333101, 333103, 1000033, 1001003, 1001303, 1003001
OFFSET
1,1
MATHEMATICA
Flatten[{#, IntegerReverse[#]}&/@Select[FromDigits/@Tuples[{0, 1, 3}, 7], AllTrue[ {#, IntegerReverse[ #]}, PrimeQ]&]]//Union (* Harvey P. Dale, Sep 12 2023 *)
PROG
(PARI) allow=Vec("013"); forprime(p=1, default(primelimit), setminus( Set( Vec( Str( p ))), allow)&next; isprime(A004086(p))&print1(p", ")) /* for illustrative purpose only: better use the code below */
(PARI) a(n=50, list=0, L=[0, 1, 3], needpal=1)={ for(d=1, 1e9, u=vector(d, i, 10^(d-i))~; forvec(v=vector(d, i, [1+(i==1&!L[1]), #L]), isprime(t=vector(d, i, L[v[i]])*u) || next; needpal & !isprime(A004086(t)) & next; list & print1(t", "); n-- || return(t)))} \\ M. F. Hasler, Nov 06 2011
(Magma) [p: p in PrimesUpTo(10^8) | Set(Intseq(p)) subset [0, 1, 3] and IsPrime(Seqint(Reverse(Intseq(p))))]; // Bruno Berselli, Nov 07 2011
(Python)
from itertools import product
from sympy import isprime
A199303_list = [n for n in (int(''.join(s)) for s in product('013', repeat=12)) if isprime(n) and isprime(int(str(n)[::-1]))] # Chai Wah Wu, Dec 17 2015
CROSSREFS
KEYWORD
nonn,base
AUTHOR
M. F. Hasler, Nov 04 2011
STATUS
approved