The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A199303 Palindromic primes in the sense of A007500 with digits '0', '1' and '3' only. 2
 3, 11, 13, 31, 101, 113, 131, 311, 313, 1031, 1033, 1103, 1301, 3011, 3301, 10301, 10333, 11003, 11311, 13331, 30011, 30103, 31013, 31033, 33013, 33301, 101333, 110311, 113011, 113131, 131311, 133033, 133103, 301331, 301333, 330331, 333101, 333103, 1000033, 1001003, 1001303, 1003001 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 LINKS Chai Wah Wu, Table of n, a(n) for n = 1..6114 MATHEMATICA Flatten[{#, IntegerReverse[#]}&/@Select[FromDigits/@Tuples[{0, 1, 3}, 7], AllTrue[ {#, IntegerReverse[ #]}, PrimeQ]&]]//Union (* Harvey P. Dale, Sep 12 2023 *) PROG (PARI) allow=Vec("013"); forprime(p=1, default(primelimit), setminus( Set( Vec( Str( p ))), allow)&next; isprime(A004086(p))&print1(p", ")) /* for illustrative purpose only: better use the code below */ (PARI) a(n=50, list=0, L=[0, 1, 3], needpal=1)={ for(d=1, 1e9, u=vector(d, i, 10^(d-i))~; forvec(v=vector(d, i, [1+(i==1&!L[1]), #L]), isprime(t=vector(d, i, L[v[i]])*u) || next; needpal & !isprime(A004086(t)) & next; list & print1(t", "); n-- || return(t)))} \\ M. F. Hasler, Nov 06 2011 (Magma) [p: p in PrimesUpTo(10^8) | Set(Intseq(p)) subset [0, 1, 3] and IsPrime(Seqint(Reverse(Intseq(p))))]; // Bruno Berselli, Nov 07 2011 (Python) from itertools import product from sympy import isprime A199303_list = [n for n in (int(''.join(s)) for s in product('013', repeat=12)) if isprime(n) and isprime(int(str(n)[::-1]))] # Chai Wah Wu, Dec 17 2015 CROSSREFS Cf. A020449 - A020472, A199325 - A199329, A199302 - A199306. Sequence in context: A111488 A125308 A260044 * A244047 A020451 A018450 Adjacent sequences: A199300 A199301 A199302 * A199304 A199305 A199306 KEYWORD nonn,base AUTHOR M. F. Hasler, Nov 04 2011 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 17 18:36 EDT 2024. Contains 373463 sequences. (Running on oeis4.)