login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A199300
a(n) = (2*n + 1)*7^n.
4
1, 21, 245, 2401, 21609, 184877, 1529437, 12353145, 98001617, 766718533, 5931980229, 45478515089, 346032180025, 2616003280989, 19668469112621, 147174406808233, 1096686708796833, 8142067989552245, 60251303122686613, 444556912229552577, 3271482918202092041
OFFSET
0,2
FORMULA
a(n) = 14*a(n-1) - 49*a(n-2).
G.f.: (1+7*x)/(1-7*x)^2.
a(n) = 7*a(n-1) + 2*7^n. - Vincenzo Librandi, Nov 05 2011
From Amiram Eldar, Dec 10 2022: (Start)
Sum_{n>=0} 1/a(n) = sqrt(7)*arccoth(sqrt(7)).
Sum_{n>=0} (-1)^n/a(n) = sqrt(7)*arccot(sqrt(7)). (End)
E.g.f.: exp(7*x)*(1 + 14*x). - Stefano Spezia, May 09 2023
MATHEMATICA
a[n_] := (2*n + 1)*7^n; Array[a, 25, 0] (* Amiram Eldar, Dec 10 2022 *)
PROG
(Magma) [(2*n+1)*7^n: n in [0..30]]; // Vincenzo Librandi, Nov 05 2011
(PARI) a(n) = (2*n+1)*7^n \\ Amiram Eldar, Dec 10 2022
KEYWORD
nonn,easy
AUTHOR
Philippe Deléham, Nov 04 2011
EXTENSIONS
a(15) corrected by Vincenzo Librandi, Nov 05 2011
STATUS
approved