login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A199298 Number of nonseparable self-complementary graphs on n nodes. 0
0, 0, 0, 1, 0, 0, 9, 34, 0, 0, 710, 5564, 0, 0, 703040, 11214400, 0, 0, 9167628016, 293282496992, 0, 0, 1601362631008768, 102484554971313664, 0, 0, 3837877364995133299200, 491247174830495384679424, 0, 0, 128777253726458141919084341248, 32966970567472655355824573149184 (list; graph; refs; listen; history; text; internal format)
OFFSET

2,7

LINKS

Table of n, a(n) for n=2..33.

Ken-ichi Kawarabayashi et al., On separable self-complementary graphs, Discrete Math., 257 (2002), 165-168.

FORMULA

a(n) = A000171(n) - A000171(n-4) for n >= 4.

MATHEMATICA

permcount[v_] := Module[{m = 1, s = 0, k = 0, t}, For[i = 1, i <= Length[v], i++, t = v[[i]]; k = If[i > 1 && t == v[[i - 1]], k + 1, 1]; m *= t*k; s += t]; s!/m];

edges[v_] := 4 Sum[Sum[GCD[v[[i]], v[[j]]], {j, 1, i - 1}], {i, 2, Length[v]}] + 2 Total[v];

A000171[n_] := Module[{s = 0}, Switch[Mod[n, 4], 2 | 3, 0, _, Do[s += permcount[4 p]*2^edges[p]*If[OddQ[n], n*2^Length[p], 1], {p, IntegerPartitions[Quotient[n, 4]]}]; s/n!]];

a[n_] := A000171[n] - A000171[n - 4];

Table[a[n], {n, 2, 33}] (* Jean-Fran├žois Alcover, Aug 27 2019, after Andrew Howroyd *)

CROSSREFS

Cf. A000171.

Sequence in context: A275695 A145925 A028568 * A044086 A044467 A020163

Adjacent sequences:  A199295 A199296 A199297 * A199299 A199300 A199301

KEYWORD

nonn

AUTHOR

N. J. A. Sloane, Nov 04 2011

EXTENSIONS

Terms a(20) and beyond from Andrew Howroyd, Sep 17 2018

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 9 20:46 EDT 2020. Contains 333363 sequences. (Running on oeis4.)