Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #28 May 09 2023 08:57:26
%S 1,21,245,2401,21609,184877,1529437,12353145,98001617,766718533,
%T 5931980229,45478515089,346032180025,2616003280989,19668469112621,
%U 147174406808233,1096686708796833,8142067989552245,60251303122686613,444556912229552577,3271482918202092041
%N a(n) = (2*n + 1)*7^n.
%H Vincenzo Librandi, <a href="/A199300/b199300.txt">Table of n, a(n) for n = 0..1000</a>
%H <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (14,-49).
%F a(n) = 14*a(n-1) - 49*a(n-2).
%F G.f.: (1+7*x)/(1-7*x)^2.
%F a(n) = 7*a(n-1) + 2*7^n. - _Vincenzo Librandi_, Nov 05 2011
%F From _Amiram Eldar_, Dec 10 2022: (Start)
%F Sum_{n>=0} 1/a(n) = sqrt(7)*arccoth(sqrt(7)).
%F Sum_{n>=0} (-1)^n/a(n) = sqrt(7)*arccot(sqrt(7)). (End)
%F E.g.f.: exp(7*x)*(1 + 14*x). - _Stefano Spezia_, May 09 2023
%t a[n_] := (2*n + 1)*7^n; Array[a, 25, 0] (* _Amiram Eldar_, Dec 10 2022 *)
%o (Magma) [(2*n+1)*7^n: n in [0..30]]; // _Vincenzo Librandi_, Nov 05 2011
%o (PARI) a(n) = (2*n+1)*7^n \\ _Amiram Eldar_, Dec 10 2022
%Y Cf. A014480, A058962, A124647, A155988, A171220, A199299, A199301.
%K nonn,easy
%O 0,2
%A _Philippe Deléham_, Nov 04 2011
%E a(15) corrected by _Vincenzo Librandi_, Nov 05 2011