The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A171220 a(n) = (2n + 1)*5^n. 5
 1, 15, 125, 875, 5625, 34375, 203125, 1171875, 6640625, 37109375, 205078125, 1123046875, 6103515625, 32958984375, 177001953125, 946044921875, 5035400390625, 26702880859375, 141143798828125, 743865966796875, 3910064697265625, 20503997802734375, 107288360595703125 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS Inserting x=1/sqrt(b) into the power series expansion of arctanh(x) yields the general BBP-type formula log((sqrt(b)+1)/(sqrt(b)-1))*sqrt(b)/2 = Sum_{k>=0} 1/((2k+1)b^k). This sequence illustrates case b=5, with Sum_{k>=0} 1/a(k) = sqrt(5)*log((1+sqrt(5))/2). LINKS Vincenzo Librandi, Table of n, a(n) for n = 0..200 David H. Bailey, Compendium of BBP formulas for mathematical constants. See formula 86 at p. 26. Index entries for linear recurrences with constant coefficients, signature (10,-25). FORMULA a(n) = 10*a(n-1) - 25*a(n-2). O.g.f: (1+5*x)/(1-5*x)^2. Sum_{n>=0} (-1)^n/a(n) = sqrt(5)*arctan(1/sqrt(5)). - Amiram Eldar, Feb 26 2022 E.g.f.: exp(5*x)*(1 + 10*x). - Stefano Spezia, May 09 2023 PROG (PARI) a(n)=(2*n+1)*5^n (Magma) [(2*n+1)*5^n: n in [0..25]]; // Vincenzo Librandi, Jun 08 2011 CROSSREFS Cf. A014480 ((2n+1)*2^n), A124647 ((2n+1)*3^n), A058962 ((2n+1)*4^n), A155988 ((2n+1)*9^n), A165283 ((2n+1)*16^n), A166725 ((2n+1)*25^n). Sequence in context: A349295 A027839 A034271 * A071080 A193365 A069975 Adjacent sequences: A171217 A171218 A171219 * A171221 A171222 A171223 KEYWORD nonn,easy AUTHOR Jaume Oliver Lafont, Dec 05 2009 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 23 20:33 EDT 2024. Contains 371916 sequences. (Running on oeis4.)