login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A038603
Primes not containing the digit '1'.
24
2, 3, 5, 7, 23, 29, 37, 43, 47, 53, 59, 67, 73, 79, 83, 89, 97, 223, 227, 229, 233, 239, 257, 263, 269, 277, 283, 293, 307, 337, 347, 349, 353, 359, 367, 373, 379, 383, 389, 397, 409, 433, 439, 443, 449, 457, 463, 467, 479, 487, 499, 503, 509, 523, 547, 557
OFFSET
1,1
COMMENTS
Subsequence of A132080. - Reinhard Zumkeller, Aug 09 2007
Maynard proves that this sequence is infinite and in particular contains the expected number of elements up to x, on the order of x^(log 9/log 10)/log x. - Charles R Greathouse IV, Apr 08 2016
LINKS
Indranil Ghosh, Table of n, a(n) for n = 1..50000 (terms 1..1000 from R. Zumkeller)
M. F. Hasler, Numbers avoiding certain digits, OEIS Wiki, Jan 12 2020.
James Maynard, Primes with restricted digits, arXiv:1604.01041 [math.NT], 2016.
James Maynard and Brady Haran, Primes without a 7, Numberphile video (2019).
FORMULA
a(n) ~ n^(log 10/log 9) log n. - Charles R Greathouse IV, Aug 03 2023
MATHEMATICA
Select[Prime[Range[70]], DigitCount[#, 10, 1] == 0 &] (* Vincenzo Librandi, Aug 09 2011 *)
PROG
(Magma) [ p: p in PrimesUpTo(600) | not 1 in Intseq(p) ]; // Bruno Berselli, Aug 08 2011
(PARI) is(n)=if(isprime(n), n=vecsort(eval(Vec(Str(n))), , 8); n[1]>1||(!n[1]&&n[2]>1)) \\ Charles R Greathouse IV, Aug 09 2011
(PARI) is(n)=!vecsearch(vecsort(digits(n)), 1) && isprime(n) \\ Charles R Greathouse IV, Oct 03 2012
(PARI) next_A038603(n)=until((n=nextprime(n+1))==n=next_A052383(n-1), ); n \\ Compute least a(k) > n. See A052383. - M. F. Hasler, Jan 14 2020
(Python)
from sympy import nextprime
i=p=1
while i<=500:
p = nextprime(p)
if '1' not in str(p):
print(str(i)+" "+str(p))
i+=1
# Indranil Ghosh, Feb 07 2017, edited by M. F. Hasler, Jan 15 2020
# See the OEIS Wiki page for more efficient programs. - M. F. Hasler, Jan 14 2020
CROSSREFS
Intersection of A000040 (primes) and A052383 (numbers with no digit 1).
Primes having no digit d = 0..9 are A038618, this sequence, A038604, A038611, A038612, A038613, A038614, A038615, A038616, and A038617, respectively.
Primes with other restrictions on digits: A106116, A156756.
Sequence in context: A069867 A320585 A024770 * A106116 A091727 A240920
KEYWORD
nonn,easy,base
AUTHOR
Vasiliy Danilov (danilovv(AT)usa.net), Jul 15 1998
STATUS
approved