login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A038616
Primes not containing digit '8'.
12
2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241, 251, 257, 263, 269, 271, 277, 293, 307
OFFSET
1,1
COMMENTS
Subsequence of primes of A052421. - Michel Marcus, Feb 22 2015
Maynard proves that this sequence is infinite and in particular contains the expected number of elements up to x, on the order of x^(log 9/log 10)/log x. - Charles R Greathouse IV, Apr 08 2016
LINKS
M. F. Hasler, Numbers avoiding certain digits, OEIS Wiki, Jan 12 2020.
James Maynard, Primes with restricted digits, arXiv:1604.01041 [math.NT], 2016.
James Maynard and Brady Haran, Primes without a 7, Numberphile video (2019).
FORMULA
a(n) ~ n^(log 10/log 9) log n. - Charles R Greathouse IV, Aug 03 2023
MATHEMATICA
Select[Prime[Range[70]], DigitCount[#, 10, 8] == 0 &] (* Harvey P. Dale, Jan 24 2011 *)
PROG
(Magma) [ p: p in PrimesUpTo(400) | not 8 in Intseq(p) ]; // Bruno Berselli, Aug 08 2011
(PARI) lista(nn)=forprime(p=2, nn, if (!vecsearch(vecsort(digits(p), , 8), 8), print1(p, ", ")); ); \\ Michel Marcus, Feb 22 2015
(PARI) next_A038616(n)=until((n=nextprime(n+1))==(n=next_A052421(n-1)), ); n \\ M. F. Hasler, Jan 14 2020
CROSSREFS
Intersection of A000040 (primes) and A052421 (numbers with no 8).
Primes having no digit d = 0..9 are A038618, A038603, A038604, A038611, A038612, A038613, A038614, A038615, this sequence, and A038617, respectively.
Sequence in context: A079152 A124590 A049573 * A228296 A176165 A196230
KEYWORD
nonn,easy,base
AUTHOR
Vasiliy Danilov (danilovv(AT)usa.net), Jul 15 1998
EXTENSIONS
Offset corrected by Arkadiusz Wesolowski, Aug 07 2011
STATUS
approved