login
A038618
Primes not containing the decimal digit 0, a.k.a. zeroless or zerofree primes.
45
2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241, 251, 257, 263, 269, 271, 277, 281, 283, 293
OFFSET
1,1
COMMENTS
Complement of A056709 with respect to primes (A000040). - Lekraj Beedassy, Jul 04 2010
Maynard proves that this sequence is infinite and in particular contains the expected number of elements up to x, on the order of x^(log 9/log 10)/log x. - Charles R Greathouse IV, Apr 08 2016
LINKS
Charles R Greathouse IV, Table of n, a(n) for n = 1..10000
M. F. Hasler, Numbers avoiding certain digits, OEIS Wiki, Jan 12 2020.
James Maynard, Primes with restricted digits, arXiv:1604.01041 [math.NT], 2016.
James Maynard and Brady Haran, Primes without a 7, Numberphile video (2019).
Eric Weisstein's World of Mathematics, Zerofree
FORMULA
Intersection of A052382 (zeroless numbers) and A000040 (primes); A168046(a(n))*A010051(a(n)) = 1. - Reinhard Zumkeller, Dec 01 2009
a(n) ~ n^(log 10/log 9) log n. - Charles R Greathouse IV, Aug 03 2023
MATHEMATICA
Select[Prime[Range[70]], DigitCount[#, 10, 0] == 0 &] (* Vincenzo Librandi, Aug 09 2011 *)
PROG
(Magma) [ p: p in PrimesUpTo(300) | not 0 in Intseq(p) ]; // Bruno Berselli, Aug 08 2011
(PARI) is(n)=if(isprime(n), n=vecsort(eval(Vec(Str(n))), , 8); n[1]>0) \\ Charles R Greathouse IV, Aug 09 2011
(PARI) lista(nn) = forprime (p=2, nn, if (vecmin(digits(p)), print1(p, ", "))); \\ Michel Marcus, Apr 06 2016
(PARI) next_A038618(n)=until(vecmin(digits(n=nextprime(next_A052382(n)))), ); n \\ Cf. OEIS Wiki page (LINKS) for other programs. - M. F. Hasler, Jan 12 2020
(Haskell)
a038618 n = a038618_list !! (n-1)
a038618_list = filter ((== 1) . a168046) a000040_list
-- Reinhard Zumkeller, Apr 07 2014, Sep 27 2011
(Python)
from sympy import primerange
def aupto(N): return [p for p in primerange(1, N+1) if '0' not in str(p)]
print(aupto(300)) # Michael S. Branicky, Mar 11 2022
CROSSREFS
Subsequence of A000040 (primes), A052382 (zeroless numbers) and A195943.
Primes having no digit d = 0..9 are this sequence, A038603, A038604, A038611, A038612, A038613, A038614, A038615, A038616, and A038617, respectively.
Sequence in context: A052085 A082646 A231588 * A030475 A069676 A062353
KEYWORD
nonn,easy,base
AUTHOR
Vasiliy Danilov (danilovv(AT)usa.net), Jul 15 1998
STATUS
approved