OFFSET
1,1
COMMENTS
Maynard proves that this sequence is infinite and in particular contains the expected number of elements up to x, on the order of x^(log 9/log 10)/log x. - Charles R Greathouse IV, Apr 08 2016
LINKS
Charles R Greathouse IV, Table of n, a(n) for n = 1..10000
M. F. Hasler, Numbers avoiding certain digits, OEIS Wiki, Jan 12 2020.
James Maynard, Primes with restricted digits, arXiv:1604.01041 [math.NT], 2016.
James Maynard and Brady Haran, Primes without a 7, Numberphile video (2019).
Eric Weisstein's World of Mathematics, Zerofree
FORMULA
Intersection of A052382 (zeroless numbers) and A000040 (primes); A168046(a(n))*A010051(a(n)) = 1. - Reinhard Zumkeller, Dec 01 2009
a(n) ~ n^(log 10/log 9) log n. - Charles R Greathouse IV, Aug 03 2023
MATHEMATICA
Select[Prime[Range[70]], DigitCount[#, 10, 0] == 0 &] (* Vincenzo Librandi, Aug 09 2011 *)
PROG
(Magma) [ p: p in PrimesUpTo(300) | not 0 in Intseq(p) ]; // Bruno Berselli, Aug 08 2011
(PARI) is(n)=if(isprime(n), n=vecsort(eval(Vec(Str(n))), , 8); n[1]>0) \\ Charles R Greathouse IV, Aug 09 2011
(PARI) lista(nn) = forprime (p=2, nn, if (vecmin(digits(p)), print1(p, ", "))); \\ Michel Marcus, Apr 06 2016
(PARI) next_A038618(n)=until(vecmin(digits(n=nextprime(next_A052382(n)))), ); n \\ Cf. OEIS Wiki page (LINKS) for other programs. - M. F. Hasler, Jan 12 2020
(Haskell)
a038618 n = a038618_list !! (n-1)
a038618_list = filter ((== 1) . a168046) a000040_list
-- Reinhard Zumkeller, Apr 07 2014, Sep 27 2011
(Python)
from sympy import primerange
def aupto(N): return [p for p in primerange(1, N+1) if '0' not in str(p)]
print(aupto(300)) # Michael S. Branicky, Mar 11 2022
CROSSREFS
KEYWORD
nonn,easy,base
AUTHOR
Vasiliy Danilov (danilovv(AT)usa.net), Jul 15 1998
STATUS
approved