login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A168046
Characteristic function of zerofree numbers in decimal representation.
26
0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0
OFFSET
0,1
COMMENTS
a(A052382(n)) = 1; a(A011540(n)) = 0;
a(n) = A000007(A055641(n));
not the same as A168184: a(n)=A168184(n) for n<=100.
a(A007602(n)) = a(A038186(n)) = 1. - Reinhard Zumkeller, Apr 07 2011
LINKS
Eric Weisstein's World of Mathematics, Zerofree
FORMULA
a(n) = A057427(A010879(n)) * (if n<10 then 1 else a(A059995(n))).
From Hieronymus Fischer, Jan 23 2013: (Start)
a(n) = A057427(A007954(n)) = sign(dp_10(n)).
where dp_10(n) digital product of n in base 10.
a(n) = 1 - A217096(n).
a(n) = 1 - sign(A055641(n)).
g(x) = x(1-x^9)/((1-x)(1-x^10))(1 + sum_{j>=1} (x^((10^j-10)/9) - x^10^j)/(1-x^10^(j+1)))).
g(x) = 1/(1-x) - g_A217096(x), where g_A217096(x) is the g.f. of A217096.
(End)
MATHEMATICA
Map[Boole[FreeQ[IntegerDigits[#], 0]] &, Range[0, 100]] (* Paolo Xausa, May 06 2024 *)
PROG
(Haskell)
a168046 = fromEnum . ch0 where
ch0 x = x > 0 && (x < 10 || d > 0 && ch0 x') where (x', d) = divMod x 10
-- Reinhard Zumkeller, May 10 2015, Apr 07 2011
CROSSREFS
KEYWORD
base,nonn
AUTHOR
Reinhard Zumkeller, Dec 01 2009
STATUS
approved