login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A168184 Characteristic function of numbers that are not multiples of 10. 17
0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,1

COMMENTS

a(n+10) = a(n);

a(n) = A000007(A010879(n));

a(A067251(n)) = 1; a(A008592(n)) = 0;

not the same as A168046: a(n)=A168046 for n<=100;

A033442(n) = SUM(a(k)*(n-k): 0<=k<=n).

LINKS

Reinhard Zumkeller, Table of n, a(n) for n = 0..1000

Index entries for characteristic functions

Index entries for linear recurrences with constant coefficients, signature (0,0,0,0,0,0,0,0,0,1).

FORMULA

Dirichlet g.f. (1-1/10^s)*zeta(s). - R. J. Mathar, Feb 19 2011

For the general case: the characteristic function of numbers that are not multiples of m is a(n)=floor((n-1)/m)-floor(n/m)+1, m,n > 0. - Boris Putievskiy, May 08 2013

PROG

(Haskell)

a168184 = (1 -) . (0 ^) . (`mod` 10)

a168184_list = cycle [0, 1, 1, 1, 1, 1, 1, 1, 1, 1]

-- Reinhard Zumkeller, Oct 10 2012

(PARI) a(n)=n%10>0 \\ Charles R Greathouse IV, Sep 24 2015

CROSSREFS

Cf. A168185, A145568, A168182, A168181, A109720, A097325, A011558, A166486, A011655, A000035, A010690.

Sequence in context: A164980 A168182 A168046 * A013595 A011582 A145568

Adjacent sequences:  A168181 A168182 A168183 * A168185 A168186 A168187

KEYWORD

nonn,easy

AUTHOR

Reinhard Zumkeller, Nov 30 2009

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 17 08:17 EST 2018. Contains 317275 sequences. (Running on oeis4.)