login
A368905
a(n) = 1 if A342001(A005940(1+n)) is not divisible by p^p for any prime p, otherwise 0.
4
0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 0, 0, 1, 1, 1, 1, 0, 1
OFFSET
0
FORMULA
a(0) = 0, and for n > 0, a(n) = A359550(A366801(n)) = A368914(A005940(1+n)).
PROG
(PARI)
A003415(n) = if(n<=1, 0, my(f=factor(n)); n*sum(i=1, #f~, f[i, 2]/f[i, 1]));
A003557(n) = (n/factorback(factorint(n)[, 1]));
A005940(n) = { my(p=2, t=1); n--; until(!n\=2, if((n%2), (t*=p), p=nextprime(p+1))); (t); };
A342001(n) = (A003415(n) / A003557(n));
A366801(n) = A342001(A005940(1+n));
A359550(n) = { my(f = factor(n)); prod(k=1, #f~, (f[k, 2]<f[k, 1])); };
A368905(n) = if(!n, 0, A359550(A366801(n)));
CROSSREFS
Cf. also A368907, A368916.
Sequence in context: A252372 A168182 A204447 * A188642 A168046 A168184
KEYWORD
nonn
AUTHOR
Antti Karttunen, Jan 11 2024
STATUS
approved