login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A204447
Symmetric matrix: f(i,j)=floor[(i+j+5)/4]-floor[(i+j+2)/4], by (constant) antidiagonals.
3
0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1
OFFSET
1
COMMENTS
A block matrix over {0,1}. For guides to related matrices and permanents, see A204435 and A204263.
EXAMPLE
Northwest corner:
0 1 1 1 0 1 1 1
1 1 1 0 1 1 1 0
1 1 0 1 1 1 0 1
1 0 1 1 1 0 1 1
0 1 1 1 0 1 1 1
1 1 1 0 1 1 1 0
1 1 0 1 1 1 0 1
1 0 1 1 1 0 1 1
MATHEMATICA
f[i_, j_] :=
Floor[(i + j + 5)/4] - Floor[(i + j + 2)/4];
m[n_] := Table[f[i, j], {i, 1, n}, {j, 1, n}]
TableForm[m[8]] (* 8x8 principal submatrix *)
Flatten[Table[f[i, n + 1 - i],
{n, 1, 14}, {i, 1, n}]] (* A204447 *)
Permanent[m_] :=
With[{a = Array[x, Length[m]]},
Coefficient[Times @@ (m.a), Times @@ a]];
Table[Permanent[m[n]], {n, 1, 22}] (* A204448 *)
CROSSREFS
Sequence in context: A164980 A252372 A168182 * A368905 A188642 A168046
KEYWORD
nonn,tabl
AUTHOR
Clark Kimberling, Jan 15 2012
STATUS
approved