login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A204450
2*A203579 - A204449. Difference between the exponential convolution of A000032 (Lucas) with itself and the corresponding exponential half-convolution.
1
0, 2, 6, 17, 30, 177, 417, 1857, 4302, 19457, 47731, 203777, 509769, 2134017, 5462701, 22347777, 58104062, 234029057, 616919457, 2450784257, 6533317815, 25664946177, 69085604341, 268766806017, 729558799305, 2814562533377
OFFSET
0,2
COMMENTS
See A204449 for the exponential half-convolution of A000032 (Lucas). The present sequence gives the numbers to be added to A204449 to obtain the corresponding (full) exponential convolution A203579.
FORMULA
a(n) = sum(binomial(n,k)*L(k)*L(n-k),k=floor(n/2)+1..n), n>=0,
with the Lucas numbers L(n)=A000032(n). For n=0 this is 0.
E.g.f.: exp(x)*(cosh(sqrt(5)*x)+1) - (BesselI(0,2*phi*x) + BesselI(0,2*(phi-1)*x) + 2*BesselI(0,2*I*x))/2. Compare this with the e.g.f. of A204449, where phi and BesselI are explained.
Bisection: a(2*k) = (2^(2*k)-binomial(2*k,k))*L(2*k)/2 + 1 - ((-1)^k)*binomial(2*k,k), a(2*k+1) = 2^(2*k)*L(2*k+1)+ 1 = A204449(2*k+1), k>=0.
EXAMPLE
With A000032 = {2, 1, 3, 4, 7, 11, ...}
a(4) = 4*4*1 + 1*7*2 = 30.
a(5) = 10*4*3 + 5*7*1 + 1*11*2 = 177.
CROSSREFS
KEYWORD
nonn
AUTHOR
Wolfdieter Lang, Jan 16 2012
STATUS
approved