login
A024310
a(n) = s(1)*t(n) + s(2)*t(n-1) + ... + s(k)*t(n+1-k), where k = floor((n+1)/2), s = (natural numbers >= 2), t = (Lucas numbers).
1
2, 6, 17, 26, 59, 97, 191, 308, 565, 915, 1606, 2598, 4436, 7178, 12037, 19476, 32273, 52219, 85845, 138900, 227133, 367509, 598828, 968924, 1575046, 2548478, 4136169, 6692462, 10850455, 17556405, 28444379, 46023972, 74532629, 120596327, 195238738, 315902914, 511328632, 827347106
OFFSET
1,1
FORMULA
G.f.: (2 +4*x +5*x^2 -5*x^3 -4*x^4 +2*x^5 -2*x^6 +x^7)/((1-x-x^2)*(1-x^2-x^4)^2). - Maksym Voznyy (voznyy(AT)mail.ru), Jul 27 2009
From G. C. Greubel, Feb 21 2022: (Start)
a(n) = Sum_{j=2..floor((n+3)/2)} j*Lucas(n-j+2).
a(n) = 5*Fibonacci(n+3) - (m+1)*Lucas(n-m+5) + m*Lucas(n-m+4), where m = floor((n+3)/2).
a(2*n) = 5*Fibonacci(2*n+3) - (n+5)*Fibonacci(n+3) - n*Fibonacci(n+1).
a(2*n+1) = 5*Fibonacci(2*n+2) - (n+5)*Fibonacci(n+2) - n*Fibonacci(n). (End)
MATHEMATICA
With[{m=Floor[(n+3)/2]}, Table[5*Fibonacci[n+3] -(m+1)*LucasL[n-m+5] + m*LucasL[n -m+4], {n, 40}]] (* G. C. Greubel, Feb 21 2022 *)
PROG
(Sage) [sum(j*lucas_number2(n+2-j, 1, -1) for j in (2..floor((n+3)/2))) for n in (1..50)] # G. C. Greubel, Feb 21 2022
(Magma) [(&+[j*Lucas(n+2-j): j in [2..Floor((n+3)/2)]]) : n in [1..40]]; // G. C. Greubel, Feb 21 2022
CROSSREFS
Sequence in context: A105146 A076660 A379558 * A064516 A001441 A204450
KEYWORD
nonn
EXTENSIONS
Terms a(29) onward added by G. C. Greubel, Feb 21 2022
STATUS
approved