login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A024310
a(n) = s(1)*t(n) + s(2)*t(n-1) + ... + s(k)*t(n+1-k), where k = floor((n+1)/2), s = (natural numbers >= 2), t = (Lucas numbers).
1
2, 6, 17, 26, 59, 97, 191, 308, 565, 915, 1606, 2598, 4436, 7178, 12037, 19476, 32273, 52219, 85845, 138900, 227133, 367509, 598828, 968924, 1575046, 2548478, 4136169, 6692462, 10850455, 17556405, 28444379, 46023972, 74532629, 120596327, 195238738, 315902914, 511328632, 827347106
OFFSET
1,1
FORMULA
G.f.: (2 +4*x +5*x^2 -5*x^3 -4*x^4 +2*x^5 -2*x^6 +x^7)/((1-x-x^2)*(1-x^2-x^4)^2). - Maksym Voznyy (voznyy(AT)mail.ru), Jul 27 2009
From G. C. Greubel, Feb 21 2022: (Start)
a(n) = Sum_{j=2..floor((n+3)/2)} j*Lucas(n-j+2).
a(n) = 5*Fibonacci(n+3) - (m+1)*Lucas(n-m+5) + m*Lucas(n-m+4), where m = floor((n+3)/2).
a(2*n) = 5*Fibonacci(2*n+3) - (n+5)*Fibonacci(n+3) - n*Fibonacci(n+1).
a(2*n+1) = 5*Fibonacci(2*n+2) - (n+5)*Fibonacci(n+2) - n*Fibonacci(n). (End)
MATHEMATICA
With[{m=Floor[(n+3)/2]}, Table[5*Fibonacci[n+3] -(m+1)*LucasL[n-m+5] + m*LucasL[n -m+4], {n, 40}]] (* G. C. Greubel, Feb 21 2022 *)
PROG
(Sage) [sum(j*lucas_number2(n+2-j, 1, -1) for j in (2..floor((n+3)/2))) for n in (1..50)] # G. C. Greubel, Feb 21 2022
(Magma) [(&+[j*Lucas(n+2-j): j in [2..Floor((n+3)/2)]]) : n in [1..40]]; // G. C. Greubel, Feb 21 2022
CROSSREFS
Sequence in context: A069014 A105146 A076660 * A064516 A001441 A204450
KEYWORD
nonn
EXTENSIONS
Terms a(29) onward added by G. C. Greubel, Feb 21 2022
STATUS
approved