login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A204449
Exponential (or binomial) half-convolution of A000032 (Lucas) with itself.
1
4, 2, 8, 17, 84, 177, 737, 1857, 7732, 19457, 78223, 203777, 809145, 2134017, 8349013, 22347777, 86533892, 234029057, 897748577, 2450784257, 9328491339, 25664946177, 97021416973, 268766806017, 1009936510009, 2814562533377
OFFSET
0,1
COMMENTS
For the definition of the exponential (also known as binomial) half-convolution of a sequence with itself see A203576. There the rule for the e.g.f. is also found.
The other half of this exponential half-convolution is found under A204450.
FORMULA
a(n) = sum(binomial(n,k)*L(k)*L(n-k),k=0..floor(n/2)), n>=0, with L(n)=A000032(n).
E.g.f.: (l(x)^2 + L2(x^2))/2 with the e.g.f. l(x) of A000032, and the o.g.f. L2(x) of the sequence {(L(n)/n!)^2}.
l(x)^2 = 2*exp(x)*(cosh(sqrt(5)*x)+1) (see 2*A203579).
L2(x^2) = BesselI(0,2*phi*x) + BesselI(0,2*(phi-1)*x) + 2*BesselI(0,2*I*x), with the golden section phi:=(1+sqrt(5))/2, and for BesselI see Abramowitz-Stegun (reference and link given under A008277), p. 375, eq. 9.6.10.
BesselI(0,2*sqrt(x)) = hypergeom([],[1],x) is the e.g.f. of {1/n!}.
Bisection: a(2*k) = (2^(2*k)+binomial(2*k,k))*L(2*k)/2 +1 + ((-1)^k)*binomial(2*k,k), a(2*k+1) = 2^(2*k)*L(2*k+1)+1, k>=0. For (2^(2*k)+binomial(2*k,k))/2 see A032443(k).
EXAMPLE
With A000032 = {2, 1, 3, 4, 7, 11,...}
a(4) = 1*2*7 + 4*1*4 + 6*3*3 = 84,
a(5) = 1*2*11 + 5*1*7 + 10*3*4 = 177.
MATHEMATICA
Table[Sum[Binomial[n, k]*LucasL[k]*LucasL[n-k], {k, 0, Floor[n/2]}], {n, 0, 30}] (* Vaclav Kotesovec, Sep 25 2019 *)
CROSSREFS
Cf. A000032, 2*A203579 (exponential convolution), A204450.
Sequence in context: A110622 A130078 A230900 * A172393 A245340 A040174
KEYWORD
nonn,easy
AUTHOR
Wolfdieter Lang, Jan 16 2012
STATUS
approved