login
A038621
Growth function of an infinite cubic graph (number of nodes at distance <=n from fixed node).
2
1, 4, 10, 22, 46, 81, 129, 198, 284, 392, 530, 691, 883, 1114, 1374, 1674, 2022, 2405, 2837, 3326, 3856, 4444, 5098, 5799, 6567, 7410, 8306, 9278, 10334, 11449, 12649, 13942, 15300, 16752, 18306, 19931, 21659, 23498, 25414, 27442, 29590, 31821, 34173, 36654
OFFSET
0,2
COMMENTS
Partial sums of A038620.
FORMULA
a(0)=1, a(1)=4; for n>=2: if n == 0 (mod 3), a(n) = (4*n^3 + 6*n^2 + 15*n - 9)/9; if n == 1 (mod 3), a(n) = (4*n^3 + 6*n^2 + 18*n - 10)/9; if n == 2 (mod 3), a(n) = (4*n^3 + 6*n^2 + 15*n + 4)/9.
G.f.: (x+1)*(2*x^8-4*x^7+3*x^6-x^5+6*x^4+2*x^3+2*x^2+x+1) / ((x-1)^4*(x^2+x+1)^2). - Colin Barker, May 10 2013
MATHEMATICA
CoefficientList[Series[(x + 1) (2 x^8 - 4 x^7 + 3 x^6 - x^5 + 6 x^4 + 2 x^3 + 2 x^2 + x + 1)/((x - 1)^4 (x^2 + x + 1)^2), {x, 0, 50}], x] (* Vincenzo Librandi, Oct 22 2013 *)
LinearRecurrence[{2, -1, 2, -4, 2, -1, 2, -1}, {1, 4, 10, 22, 46, 81, 129, 198, 284, 392}, 50] (* Harvey P. Dale, Sep 03 2016 *)
CROSSREFS
Sequence in context: A265052 A266372 A174622 * A078407 A347113 A347307
KEYWORD
nonn,easy
EXTENSIONS
More terms from Colin Barker, May 10 2013
STATUS
approved