The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A347113 a(1)=1; for n > 1, a(n) is the smallest unused positive number k such that k != j and gcd(k,j) != 1, where j = a(n-1) + 1. 33
 1, 4, 10, 22, 46, 94, 5, 2, 6, 14, 3, 8, 12, 26, 9, 15, 18, 38, 13, 7, 16, 34, 20, 24, 30, 62, 21, 11, 27, 32, 36, 74, 25, 28, 58, 118, 17, 33, 40, 82, 166, 334, 35, 39, 42, 86, 29, 44, 48, 56, 19, 45, 23, 50, 54, 60, 122, 41, 49, 52, 106, 214, 43, 55, 63, 66 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS Alternative definition: Lexicographically earliest sequence of distinct positive numbers such that a(n) != a(n-1)+1 and gcd(a(n-1)+1,a(n)) > 1. This makes it a cousin of the EKG sequence A064413, the Yellowstone permutation A098550, the Enots Wolley sequence A336957, and others. - N. J. A. Sloane, Sep 01 2021; revised Nov 08 2021. The successive gcd's are listed in A347309. LINKS Michel Marcus, Table of n, a(n) for n = 1..10000 Chai Wah Wu, Table of n, a(n) for n = 1..10^6 Chai Wah Wu, Graph of first million terms Index entries for sequences that are permutations of the integers EXAMPLE a(1) = 1, by definition. a(2) = 4; it cannot be 2, because 2 = a(1) + 1, and it cannot be 3, because gcd(a(1) + 1, 3) = 1. a(3) = 10, because gcd(a(3), a(2) + 1) cannot equal 1. a(2) + 1 = 5, so a(3) must be a multiple of 5. It cannot be equal to 5, so it must be 10, the next available multiple of 5. a(4) = 22, because 22 is the smallest positive integer not equal to 11 and not coprime to 11. MAPLE b:= proc() true end: a:= proc(n) option remember; local j, k; j:= a(n-1)+1; for k from 2 do if b(k) and k<>j and igcd(k, j)>1 then b(k):= false; return k fi od end: a(1):= 1: seq(a(n), n=1..100); # Alois P. Heinz, Sep 02 2021 MATHEMATICA Block[{a = {1}, c, k, m = 2}, Do[If[IntegerQ@Log2[i], While[IntegerQ[c[m]], m++]]; Set[k, m]; While[Or[IntegerQ[c[k]], k == # + 1, GCD[k, # + 1] == 1], k++] &[a[[-1]]]; AppendTo[a, k]; Set[c[k], i], {i, 65}]; a] (* Michael De Vlieger, Aug 18 2021 *) PROG (PARI) find(va, x) = {my(k=1, s=Set(va)); while ((k==x) || (gcd(k, x) == 1) || setsearch(s, k), k++); k; } lista(nn) = {my(va = vector(nn)); va[1] = 1; for (n=2, nn, va[n] = find(va, va[n-1]+1); ); va; } \\ Michel Marcus, Aug 21 2021 (Python) from math import gcd A347113_list, nset, m = [1], {1}, 2 for _ in range(100): j = A347113_list[-1]+1 k = m while k == j or gcd(k, j) == 1 or k in nset: k += 1 A347113_list.append(k) nset.add(k) while m in nset: m += 1 # Chai Wah Wu, Sep 01 2021 CROSSREFS See A347306 for the inverse, A347307, A347308 for the records, A347309 for the gcd values, A347312 for the parity of a(n), A347314 for the fixed points, and A348780 for partial sums. For the main diagonal see (A348787(k), A348788(k)). Cf. A064413, A098550, A336957, A347313, A348779, A348785, A348786, A353712, A353713. Sequence in context: A174622 A038621 A078407 * A347307 A265054 A099018 Adjacent sequences: A347110 A347111 A347112 * A347114 A347115 A347116 KEYWORD nonn AUTHOR Grant Olson, Aug 18 2021 EXTENSIONS Comments edited (including deletion of incorrect comments) by N. J. A. Sloane, Sep 05 2021 For the moment I am withdrawing my claim that this is a permutation of the positive integers. - N. J. A. Sloane, Sep 05 2022 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified March 3 04:18 EST 2024. Contains 370499 sequences. (Running on oeis4.)