login
A347114
Heptagonal pandigitals.
1
1386470925, 1423809765, 1463095872, 1536942870, 1560837942, 1583406972, 1640538297, 1738402695, 1765403829, 1795023846, 1920538647, 2056743198, 2076149583, 2089571436, 2097384615, 2301546897, 2386051749, 2453718609, 2531869704, 2587063149, 2605431798
OFFSET
1,1
COMMENTS
There are 53 pandigital heptagonal numbers with no repeated digits, i.e., 10-digit pandigital heptagonal numbers. - Harvey P. Dale, Mar 26 2022
FORMULA
Intersection of A000566 (heptagonal numbers) and A171102 (infinite pandigital numbers).
MATHEMATICA
h[n_] := n*(5*n - 3)/2; Select[h /@ Range[33000], Length @ DeleteDuplicates @ IntegerDigits[#] == 10 &] (* Amiram Eldar, Aug 19 2021 *)
Select[PolygonalNumber[7, Range[20234, 62854]], Sort[IntegerDigits[#]] == Range[ 0, 9]&] (* Harvey P. Dale, Mar 26 2022 *)
PROG
(Sage)
A000566 = list(int(n*(5*n-3)/2) for n in range(0, 1000000))
def haspan(s): return any(len(set(s[i:i+10]))==10 for i in range(len(s)-9))
A347114 = list(elem for elem in A000566 if haspan(str(elem)))
CROSSREFS
Sequence in context: A338516 A091443 A114888 * A376672 A105015 A225142
KEYWORD
nonn,base,less
AUTHOR
Dumitru Damian, Aug 19 2021
STATUS
approved