login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A156756
Primes not containing exactly two odd digits.
5
2, 3, 5, 7, 23, 29, 41, 43, 47, 61, 67, 83, 89, 113, 131, 137, 139, 151, 157, 173, 179, 191, 193, 197, 199, 223, 227, 229, 241, 263, 269, 281, 283, 311, 313, 317, 331, 337, 353, 359, 373, 379, 397, 401, 409, 421, 443, 449, 461, 463, 467, 487, 557, 571, 577, 593
OFFSET
1,1
COMMENTS
Odd digits are 1, 3, 5, 7 or 9.
LINKS
FORMULA
a(n) ~ n log n. On the Riemann hypothesis, a(n) = ali(n) + O(n^k log n) where ali is the inverse logarithmic integral and k = log 5/log 10 = 0.69897.... - Charles R Greathouse IV, Apr 08 2016
MATHEMATICA
checkQ[n_] := Module[{d = IntegerDigits[n]}, Length[Select[d, OddQ]] != 2]; Select[Prime[Range[200]], checkQ] (* T. D. Noe, Jun 06 2012 *)
PROG
(PARI) is(n)=#select(d->d%2, digits(n))!=2 && isprime(n) \\ Charles R Greathouse IV, Apr 08 2016
CROSSREFS
Cf. A000040.
Sequence in context: A343590 A343591 A323578 * A225659 A068690 A069556
KEYWORD
nonn,base
AUTHOR
EXTENSIONS
183 replaced by 283 - R. J. Mathar, Feb 20 2009
Definition clarified by Jonathan Sondow, Jun 06 2012
STATUS
approved