login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A038602
One half of convolution of central binomial coefficients A000984(n) with A000984(n+2), n >= 0.
1
3, 16, 73, 316, 1334, 5552, 22901, 93892, 383290, 1559680, 6331098, 25649976, 103758828, 419195552, 1691825933, 6822051092, 27488564498, 110691186272, 445487285678, 1792047789512, 7205785665908, 28963557761312
OFFSET
0,1
COMMENTS
Also convolution of A000346 with Catalan numbers but with C(0)=1 replaced by 3
FORMULA
a(n) = 2^(2*n+3)-(3*n+5)*C(n+1), C(n): Catalan numbers A000108.
G.f.: c(x)*(c(x)+2)/(1-4*x), where c(x) is G.f. for Catalan numbers.
a(n) ~ 2^(2*n+3) * (1-3/(2*sqrt(Pi*n))). - Vaclav Kotesovec, Mar 28 2014
Recurrence: n*(n+2)*a(n) = 2*(4*n^2 + 5*n - 1)*a(n-1) - 8*(n+1)*(2*n-1)*a(n-2). - Vaclav Kotesovec, Mar 28 2014
MATHEMATICA
CoefficientList[Series[(1-Sqrt[1-4*x])/(2*x)*((1-Sqrt[1-4*x])/(2*x)+2)/(1-4*x), {x, 0, 20}], x] (* Vaclav Kotesovec, Mar 28 2014 *)
CROSSREFS
Sequence in context: A012279 A037098 A316170 * A221829 A004303 A335625
KEYWORD
easy,nonn
STATUS
approved