login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A004303
a(n) = binomial(2*n-2,n-1)/n - 2^(n-1) + n.
(Formerly M3015)
1
1, 1, 1, 1, 3, 16, 75, 309, 1183, 4360, 15783, 56750, 203929, 734722, 2658071, 9662093, 35292151, 129513736, 477376575, 1766738922, 6563071865, 24464169890, 91478369359, 343051225066, 1289887370133, 4861912847046, 18367285963315, 69533416698304
OFFSET
1,5
REFERENCES
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
J. W. Moon, A problem on arcs without bypasses in tournaments, J. Combinatorial Theory Ser. B 21 (1976), no. 1, 71-75. MR0427129(55 #165).
Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
Simon Plouffe, Une méthode pour obtenir la fonction génératrice d'une série, FPSAC 1993, Florence. Formal Power Series and Algebraic Combinatorics; arXiv:0912.0072 [math.NT], 2009.
FORMULA
(n + 1)*a(n) = 68*n*a(n - 5) - 16*n*a(n - 6) + (11*n - 2)*a(n - 1) + (-47*n + 61)*a(n - 2) + (101*n - 240)*a(n - 3) + (-116*n + 398)*a(n - 4) - 304*a(n - 5) + 88*a(n - 6). - Simon Plouffe, Feb 09 2012
G.f.: x + x^2*(1 - sqrt(1-4*x) - 2*x - 2*x^3/((1-x)^2 * (1-2*x)))/(2*x^2). - Jean-François Alcover, Feb 13 2019
MATHEMATICA
Table[(Binomial[2n-2, n-1])/n-2^(n-1)+n, {n, 30}] (* Harvey P. Dale, Mar 09 2022 *)
PROG
(PARI) a(n) = binomial(2*n-2, n-1)/n - 2^(n-1) + n \\ Andrew Howroyd, Oct 24 2023
CROSSREFS
Sequence in context: A316170 A038602 A221829 * A335625 A317365 A207836
KEYWORD
nonn
EXTENSIONS
Extended to a(1)=1 using formula by Alois P. Heinz, Feb 13 2019
STATUS
approved