login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A004306
Rook polynomials.
(Formerly M1670)
4
1, 1, 2, 6, 24, 44, 80, 144, 264, 484, 888, 1632, 3000, 5516, 10144, 18656, 34312, 63108, 116072, 213488, 392664, 722220, 1328368, 2443248, 4493832, 8265444, 15202520, 27961792, 51429752, 94594060, 173985600, 320009408, 588589064, 1082584068, 1991182536
OFFSET
0,3
COMMENTS
a(n) is the number of perfect matchings in the circulant graph with 2*n vertices with jumps 1 and 3. - Robert Israel, Jan 24 2019
REFERENCES
D. H. Lehmer, Permutations with strongly restricted displacements. Combinatorial theory and its applications, II (Proc. Colloq., Balatonfured, 1969), pp. 755-770. North-Holland, Amsterdam, 1970.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
N. Metropolis, M. L. Stein, and P. R. Stein, Permanents of cyclic (0,1) matrices, Journal of Combinatorial Theory, Volume 7, Issue 4, December 1969, Pages 291-321.
Earl Glen Whitehead, Jr., Four-discordant permutations, J. Austral. Math. Soc. Ser. A 28 (1979), no. 3, 369-377.
FORMULA
G.f.: (1 - x + 2*x^3 + 13*x^4 - 3*x^5 - 6*x^6 - 10*x^7)/(1 - 2*x + x^4).
a(n) = 2*a(n-1) - a(n-4); a(0)=1, a(1)=1, a(2)=2, a(3)=6, a(4)=24, a(5)=44, a(6)=80, a(7)=144. - Harvey P. Dale, Dec 13 2011
MATHEMATICA
Join[{1, 1, 2, 6}, LinearRecurrence[{2, 0, 0, -1}, {24, 44, 80, 144}, 40]] (* or *) CoefficientList[ Series[ (1-x+2x^3+13x^4- 3x^5- 6x^6- 10x^7)/ (1-2x+ x^4), {x, 0, 40}], x] (* Harvey P. Dale, Dec 13 2011 *)
PROG
(PARI) my(x='x+O('x^40)); Vec((1-x+2*x^3+13*x^4-3*x^5-6*x^6-10*x^7)/(1 -2*x+x^4)) \\ G. C. Greubel, Apr 22 2019
(Magma) R<x>:=PowerSeriesRing(Integers(), 40); Coefficients(R!( (1-x+ 2*x^3+13*x^4-3*x^5-6*x^6-10*x^7)/(1-2*x+x^4) )); // G. C. Greubel, Apr 22 2019
(Sage) ((1-x+2*x^3+13*x^4-3*x^5-6*x^6-10*x^7)/(1-2*x+x^4)).series(x, 40).coefficients(x, sparse=False) # G. C. Greubel, Apr 22 2019
CROSSREFS
Cf. A000803. 4th column of A008305.
Equals 2 * (A001644(n) + 1), n>3.
Sequence in context: A090755 A192196 A000496 * A092485 A113904 A099144
KEYWORD
nonn,easy,nice
STATUS
approved