Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #63 Aug 04 2023 18:59:16
%S 2,3,5,7,23,29,37,43,47,53,59,67,73,79,83,89,97,223,227,229,233,239,
%T 257,263,269,277,283,293,307,337,347,349,353,359,367,373,379,383,389,
%U 397,409,433,439,443,449,457,463,467,479,487,499,503,509,523,547,557
%N Primes not containing the digit '1'.
%C Subsequence of A132080. - _Reinhard Zumkeller_, Aug 09 2007
%C Maynard proves that this sequence is infinite and in particular contains the expected number of elements up to x, on the order of x^(log 9/log 10)/log x. - _Charles R Greathouse IV_, Apr 08 2016
%H Indranil Ghosh, <a href="/A038603/b038603.txt">Table of n, a(n) for n = 1..50000</a> (terms 1..1000 from R. Zumkeller)
%H M. F. Hasler, <a href="/wiki/Numbers_avoiding_certain_digits">Numbers avoiding certain digits</a>, OEIS Wiki, Jan 12 2020.
%H James Maynard, <a href="http://arxiv.org/abs/1604.01041">Primes with restricted digits</a>, arXiv:1604.01041 [math.NT], 2016.
%H James Maynard and Brady Haran, <a href="https://www.youtube.com/watch?v=eeoBCS7IEqs">Primes without a 7</a>, Numberphile video (2019).
%F a(n) ~ n^(log 10/log 9) log n. - _Charles R Greathouse IV_, Aug 03 2023
%t Select[Prime[Range[70]], DigitCount[#, 10, 1] == 0 &] (* _Vincenzo Librandi_, Aug 09 2011 *)
%o (Magma) [ p: p in PrimesUpTo(600) | not 1 in Intseq(p) ]; // _Bruno Berselli_, Aug 08 2011
%o (PARI) is(n)=if(isprime(n),n=vecsort(eval(Vec(Str(n))),,8);n[1]>1||(!n[1]&&n[2]>1)) \\ _Charles R Greathouse IV_, Aug 09 2011
%o (PARI) is(n)=!vecsearch(vecsort(digits(n)),1) && isprime(n) \\ _Charles R Greathouse IV_, Oct 03 2012
%o (PARI) next_A038603(n)=until((n=nextprime(n+1))==n=next_A052383(n-1),);n \\ Compute least a(k) > n. See A052383. - _M. F. Hasler_, Jan 14 2020
%o (Python)
%o from sympy import nextprime
%o i=p=1
%o while i<=500:
%o p = nextprime(p)
%o if '1' not in str(p):
%o print(str(i)+" "+str(p))
%o i+=1
%o # _Indranil Ghosh_, Feb 07 2017, edited by _M. F. Hasler_, Jan 15 2020
%o # See the OEIS Wiki page for more efficient programs. - _M. F. Hasler_, Jan 14 2020
%Y Intersection of A000040 (primes) and A052383 (numbers with no digit 1).
%Y Primes having no digit d = 0..9 are A038618, this sequence, A038604, A038611, A038612, A038613, A038614, A038615, A038616, and A038617, respectively.
%Y Primes with other restrictions on digits: A106116, A156756.
%K nonn,easy,base
%O 1,1
%A Vasiliy Danilov (danilovv(AT)usa.net), Jul 15 1998