Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #18 Dec 18 2018 17:07:47
%S 3,11,13,31,61,101,103,113,131,163,311,313,331,601,613,631,661,1013,
%T 1031,1033,1061,1063,1103,1163,1301,1303,1361,1601,1613,1663,3001,
%U 3011,3061,3163,3301,3313,3331,3361,3613,3631,6011,6101,6113,6131,6133,6163
%N Primes all of whose digits are triangular.
%C Includes all repunit primes (A004022). Conjecture: an infinite sequence. Note twin primes: (11, 13), (101, 103), (311, 313), (1031, 1033), (1061, 1063), (1301, 1303), (6131, 6133), (10301, 10303), (10331, 10333), (13001, 13003).
%C In other words, primes with digits in the set {0,1,3,6}. - _M. F. Hasler_, Jul 25 2015
%C The number of 1's in the representation must be either 1 or 2 (mod 3), because otherwise the number would be divisible by 3 (and therefore composite). The only exception is the 3 itself. This excludes basically members of A038603. - _R. J. Mathar_, Jul 25 2015
%H Robert Israel, <a href="/A111488/b111488.txt">Table of n, a(n) for n = 1..10000</a>
%p f:= proc(x) local L,p;
%p L:= subs([3=6,2=3],convert(x,base,4));
%p p:= add(L[i]*10^(i-1),i=1..nops(L));
%p if isprime(p) then p fi
%p end proc:
%p map(f, [$1..4^4]); # _Robert Israel_, Dec 18 2018
%t Select[Prime@ Range@ 1000, SubsetQ[{0, 1, 3, 6}, IntegerDigits@ #] &] (* _Michael De Vlieger_, Jul 25 2015 *)
%o (PARI) A111488={(n, show=0, L=[0,1,3,6])->my(t); for(d=1,1e9,u=vector(d, i, 10^(d-i))~; forvec(v=vector(d,i,[1+(i==1&&!L[1]), #L]), ispseudoprime(t=vector(d, i, L[v[i]])*u)||next; show&print1(t", "); n--||return(t)))} \\ _M. F. Hasler_, Jul 25 2015
%Y Cf. A000040, A000217, A004022, A038603.
%Y Cf. also A020450 - A020472, A036953, A260044, A260267 - A260271, A199325 - A199329, A061247, A199340 - A199349.
%K base,easy,nonn
%O 1,1
%A _Jonathan Vos Post_, Nov 15 2005
%E Corrected by _Ray Chandler_, Nov 19 2005