login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A017933 Expansion of 1/((1-3x)(1-6x)(1-9x)). 5
1, 18, 225, 2430, 24381, 234738, 2205225, 20404710, 186995061, 1703091258, 15448694625, 139763668590, 1262226050541, 11386154248578, 102632111782425, 924629361662070, 8327306431726821, 74979611075290698 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..200

Index entries for linear recurrences with constant coefficients, signature (18,-99,162).

FORMULA

a(n) = (3^n)*Stirling2(n+3, 3), n >= 0, with Stirling2(n, m) = A008277(n, m).

a(n) = (3^n - 8*6^n + 9*9^n)/2.

G.f.: 1/((1-3*x)*(1-6*x)*(1-9*x)).

E.g.f.: (d^3/dx^3)((((exp(3*x)-1)/3)^3)/3!) = (exp(3*x) - 8*exp(6*x) + 9*exp(9*x))/2.

a(0)=1, a(1)=18, a(2)=225; for n > 2, a(n) = 18*a(n-1) - 99*a(n-2) + 162*a(n-3). - Vincenzo Librandi, Jul 02 2013

a(n) = 15*a(n-1) - 54*a(n-2) + 3^n. - Vincenzo Librandi, Jul 02 2013

MATHEMATICA

CoefficientList[Series[1 / ((1 - 3 x) (1 - 6 x) (1 - 9 x)), {x, 0, 30}], x] (* Vincenzo Librandi, Jul 02 2013 *)

PROG

(PARI) Vec(1/((1-3*x)*(1-6*x)*(1-9*x))+O(x^99)) \\ Charles R Greathouse IV, Sep 26 2012

(MAGMA) m:=20; R<x>:=PowerSeriesRing(Integers(), m); Coefficients(R!(1/((1-3*x)*(1-6*x)*(1-9*x)))); /* or */ I:=[1, 18, 225]; [n le 3 select I[n] else 18*Self(n-1)-99*Self(n-2)+162*Self(n-3): n in [1..20]]; // Vincenzo Librandi, Jul 02 2013

CROSSREFS

Third column of triangle A075498.

Cf. A016137, A028085.

Sequence in context: A155049 A155073 A153709 * A021384 A056950 A021144

Adjacent sequences:  A017930 A017931 A017932 * A017934 A017935 A017936

KEYWORD

nonn,easy

AUTHOR

N. J. A. Sloane

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 16 22:18 EDT 2021. Contains 343957 sequences. (Running on oeis4.)