|
|
A223533
|
|
Coefficients of (x^(1/3)*d/dx)^n for positive integer n.
|
|
3
|
|
|
1, 1, 3, -1, 9, 9, 1, -1, 18, 9, -5, 5, 15, 90, 27, 35, -35, 225, 405, 81, -105, 105, -35, 630, 567, 81, 1155, -1155, 490, -105, 4158, 2268, 243, 15015, -15015, 6895, 945, -10206, -23814, -8748, -729, 75075, -75075, 35700, -10675, 2835, -945, 34020, 41310, 10935, 729
(list;
table;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,3
|
|
COMMENTS
|
These are generalized Stirling numbers.
|
|
LINKS
|
Table of n, a(n) for n=1..51.
U. N. Katugampola, Mellin Transforms of Generalized Fractional Integrals and Derivatives, Appl. Math. Comput. 257(2015) 566-580.
|
|
FORMULA
|
G.f.: exp(((1+2/3*x*y)^(3/2)-1)/x).
|
|
EXAMPLE
|
1;
1, 3;
-1, 9, 9;
1, -1, 18, 9;
-5, 5, 15, 90, 27;
35, -35, 225, 405, 81;
-105, 105, 630, 567, -35, 81;
1155, -1155, 630, 4158, 490, 2268, -105, 243;
|
|
MAPLE
|
# This will generate the sequence as coefficients of pseudo polynomials
# up to a constant multiple.
a[0] := f(x):
for i to 10 do
a[i] := simplify(x^(1/3)*(diff(a[i-1], x$1)))
end do;
|
|
CROSSREFS
|
Cf. A223168-A223172, A223534-A223536.
Sequence in context: A016601 A193031 A078416 * A021973 A075498 A105729
Adjacent sequences: A223530 A223531 A223532 * A223534 A223535 A223536
|
|
KEYWORD
|
sign,tabl
|
|
AUTHOR
|
Udita Katugampola, Apr 18 2013
|
|
STATUS
|
approved
|
|
|
|