login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A212433
Number of equivalence classes of S_n under transformations of positionally and numerically adjacent elements of the form abc <--> acb <--> bac <--> cba, where a<b<c.
1
1, 1, 2, 3, 13, 71, 470, 3497, 29203, 271500, 2786711, 31322803, 382794114, 5054810585, 71735226535, 1088920362030, 17607174571553, 302143065676513, 5484510055766118, 104999034898520903, 2114467256458136473, 44682676397748896010, 988663144904696100347
OFFSET
0,3
LINKS
Anders Claesson, From Hertzsprung's problem to pattern-rewriting systems, University of Iceland (2020).
S. Linton, J. Propp, T. Roby, and J. West, Equivalence Classes of Permutations under Various Relations Generated by Constrained Transpositions, arXiv:1111.3920, 2011 [math.CO]
FORMULA
G.f.: Sum_{k>=0} k! * ( x * ((1-x^2)^2/(1-x^3) - x^2) )^k. - Seiichi Manyama, Feb 25 2024
EXAMPLE
From Alois P. Heinz, Jun 23 2012: (Start)
a(3) = 3: {123, 132, 213, 321}, {231}, {312}.
a(4) = 13: {1234, 1243, 1324, 1432, 2134, 3214}, {1342}, {1423}, {2143}, {2314}, {2341, 2431, 3241, 4123, 4132, 4213, 4321}, {2413}, {3124}, {3142}, {3412}, {3421}, {4231}, {4312}.
a(5) = 71: {12345, 12354, 12435, 12543, 13245, 13254, 14325, 21345, 21354, 21435, 21543, 32145, 32154}, {12453}, ..., {53412}, {53421}, {54231}.
(End)
PROG
(PARI) my(N=30, x='x+O('x^N)); Vec(sum(k=0, N, k!*(x*((1-x^2)^2/(1-x^3)-x^2))^k)) \\ Seiichi Manyama, Feb 25 2024
CROSSREFS
KEYWORD
nonn
AUTHOR
Tom Roby, Jun 21 2012
EXTENSIONS
a(8)-a(9) from Alois P. Heinz, Jun 23 2012
a(10)-a(22) from Alois P. Heinz, Apr 14 2021
STATUS
approved