login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of equivalence classes of S_n under transformations of positionally and numerically adjacent elements of the form abc <--> acb <--> bac <--> cba, where a<b<c.
1

%I #48 Feb 25 2024 04:28:10

%S 1,1,2,3,13,71,470,3497,29203,271500,2786711,31322803,382794114,

%T 5054810585,71735226535,1088920362030,17607174571553,302143065676513,

%U 5484510055766118,104999034898520903,2114467256458136473,44682676397748896010,988663144904696100347

%N Number of equivalence classes of S_n under transformations of positionally and numerically adjacent elements of the form abc <--> acb <--> bac <--> cba, where a<b<c.

%H Alois P. Heinz, <a href="/A212433/b212433.txt">Table of n, a(n) for n = 0..450</a>

%H Anders Claesson, <a href="https://akc.is/papers/036-From-Hertzsprungs-problem-to-pattern-rewriting-systems.pdf">From Hertzsprung's problem to pattern-rewriting systems</a>, University of Iceland (2020).

%H S. Linton, J. Propp, T. Roby, and J. West, <a href="http://arxiv.org/abs/1111.3920">Equivalence Classes of Permutations under Various Relations Generated by Constrained Transpositions</a>, arXiv:1111.3920, 2011 [math.CO]

%F G.f.: Sum_{k>=0} k! * ( x * ((1-x^2)^2/(1-x^3) - x^2) )^k. - _Seiichi Manyama_, Feb 25 2024

%e From _Alois P. Heinz_, Jun 23 2012: (Start)

%e a(3) = 3: {123, 132, 213, 321}, {231}, {312}.

%e a(4) = 13: {1234, 1243, 1324, 1432, 2134, 3214}, {1342}, {1423}, {2143}, {2314}, {2341, 2431, 3241, 4123, 4132, 4213, 4321}, {2413}, {3124}, {3142}, {3412}, {3421}, {4231}, {4312}.

%e a(5) = 71: {12345, 12354, 12435, 12543, 13245, 13254, 14325, 21345, 21354, 21435, 21543, 32145, 32154}, {12453}, ..., {53412}, {53421}, {54231}.

%e (End)

%o (PARI) my(N=30, x='x+O('x^N)); Vec(sum(k=0, N, k!*(x*((1-x^2)^2/(1-x^3)-x^2))^k)) \\ _Seiichi Manyama_, Feb 25 2024

%Y Cf. A212432, A212580, A212581.

%K nonn

%O 0,3

%A _Tom Roby_, Jun 21 2012

%E a(8)-a(9) from _Alois P. Heinz_, Jun 23 2012

%E a(10)-a(22) from _Alois P. Heinz_, Apr 14 2021