login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A188458
Expansion of e.g.f. exp(x)/cosh(2*x).
11
1, 1, -3, -11, 57, 361, -2763, -24611, 250737, 2873041, -36581523, -512343611, 7828053417, 129570724921, -2309644635483, -44110959165011, 898621108880097, 19450718635716001, -445777636063460643, -10784052561125704811, 274613643571568682777
OFFSET
0,3
COMMENTS
A signed version of A001586 (Springer numbers).
Equals the logarithmic derivative of A188514 (ignoring the initial term of this sequence); note that the unsigned version (A001586) does not form a logarithmic derivative of an integer sequence.
LINKS
FORMULA
a(n) = Sum_{k=1..n} -(-1)^(n*k)*C(n, k)*a(n-k) for n>0 with a(0)=1.
L.g.f.: log(1+x) = Sum_{n>=1} a(n)*(x^n/n)/(1 + (-1)^n*x)^n.
E.g.f.: 1 = Sum_{n>=0} a(n)*exp(-(-1)^n*x)*x^n/n!.
G.f.: 1 = Sum_{n>=0} a(n)*x^n/(1 + (-1)^n*x)^(n+1).
G.f.: 1 = Sum_{n>=0} a(n)*C(n+m-1,n)*x^n/(1 + (-1)^n*x)^(n+m) for m>=1.
a(n) = Sum_{k=0..n} 2^k C(n,k) Euler(k). - Peter Luschny
a(n) = (-1)^[n/2]*((1+I)/2)^n * Sum_{k=0..n} ((1-I)/(1+I))^k * Sum_{j=0..k} (-1)^(k-j)*C(n+1, k-j)*(2*j+1)^n. - Peter Bala
O.g.f.: 1/(1-x/(1+4*x/(1-x- 4*x/(1+4*x/(1+x- 6*x/(1+6*x/(1+x- 8*x/(1+8*x/(1+x- 10*x/(1+10*x/(1+x- 12*x/(1+12*x/(1+x- ...))))))))))))) (continued fraction).
E.g.f.: E(x) = exp(x)/cosh(2*x) = 2/G(0) where G(k)= 1 -((-1)^k)*3^k/(1 - x/(x + (k+1)*((-1)^k)*3^k/G(k+1))); (continued fraction, 3rd kind, 3-step). - Sergei N. Gladkovskii, Jun 07 2012
a(n) ~ n! * (cos(n*Pi/2) + sin(n*Pi/2)) * 2^(2*n+3/2) / Pi^(n+1). - Vaclav Kotesovec, Oct 07 2013
G.f.: conjecture T(0)/(1-x), where T(k) = 1 - 4*x^2*(k+1)^2/(4*x^2*(k+1)^2 + (1-x)^2/T(k+1) ); (continued fraction). - Sergei N. Gladkovskii, Nov 12 2013
From Peter Luschny, Apr 19 2014: (Start)
a(n) = 2^n*skp(n, 1/2), where skp(n,x) are the Swiss-Knife polynomials A153641.
a(n) = 4^n*E(n, 3/4), where E(n,x) are Euler polynomials.
a(n) = (8^n/((n+1)/2))*(B(n+1, 7/8) - B(n+1, 3/8)), where B(n,x) are the Bernoulli polynomials. (End)
a(n) = 2^(3*n+1)*(Zeta(-n,3/8)-Zeta(-n,7/8)). - Peter Luschny, Oct 15 2015
EXAMPLE
E.g.f.: exp(x)/cosh(2*x) = 1 + x - 3*x^2/2! - 11*x^3/3! + 57*x^4/4! + 361*x^5/5! +...
Illustration of other generating functions.
E.g.f.: 1 = exp(-x) + exp(x)*x - 3*exp(-x)*x^2/2! - 11*exp(x)*x^3/3! +...
L.g.f.: log(1+x) = x/(1-x) - 3*(x^2/2)/(1+x)^2 - 11*(x^3/3)/(1-x)^3 +...
G.f.: 1 = 1/(1+x) + 1*x/(1-x)^2 - 3*x^2/(1+x)^3 - 11*x^3/(1-x)^4 +...
G.f.: 1 = 1/(1+x)^2 + 1*2*x/(1-x)^3 - 3*3*x^2/(1+x)^4 - 11*4*x^3/(1-x)^5 +...
G.f.: 1 = 1/(1+x)^3 + 1*3*x/(1-x)^4 - 3*6*x^2/(1+x)^5 - 11*10*x^3/(1-x)^6 +...
MAPLE
seq(4^n*euler(n, 3/4), n=0..20); # Peter Luschny, Apr 19 2014
MATHEMATICA
CoefficientList[Series[E^x/Cosh[2*x], {x, 0, 20}], x]* Range[0, 20]! (* Vaclav Kotesovec, Oct 07 2013 *)
PROG
(PARI) {a(n)=local(X=x+x*O(x^n)); n!*polcoeff(exp(X)/cosh(2*X), n)}
(PARI) {a(n)=n!*polcoeff(1-sum(k=0, n-1, a(k)*exp(-(-1)^k*x+x*O(x^n))*x^k/k!), n)}
(PARI) {a(n)=polcoeff(1-sum(k=0, n-1, a(k)*x^k/(1+(-1)^k*x+x*O(x^n))^(k+1)), n)}
(PARI) /* Holds for m>=1: */
{a(n)=local(m=1); polcoeff(1-sum(k=0, n-1, a(k)*binomial(m+k-1, k)*x^k/(1+(-1)^k*x+x*O(x^n))^(k+m)), n)/binomial(m+n-1, n)}
(PARI) /* Recurrence: */
{a(n)=if(n<0, 0, if(n==0, 1, sum(k=1, n, -(-1)^(n*k)*binomial(n, k)*a(n-k))))}
(PARI) {EULER(n)=n!*polcoeff(1/cosh(x+x*O(x^n)), n)}
{a(n)=sum(k=0, n, 2^k*binomial(n, k)*EULER(k))}
(PARI) {a(n)=(-1)^(n\2)*((1+I)/2)^n*sum(k=0, n, ((1-I)/(1+I))^k*sum(j=0, k, (-1)^(k-j)*binomial(n+1, k-j)*(2*j+1)^n))}
CROSSREFS
Sequence in context: A217034 A330351 A180112 * A212435 A001586 A126201
KEYWORD
sign
AUTHOR
Paul D. Hanna, Apr 01 2011
STATUS
approved