login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Expansion of e.g.f. exp(x)/cosh(2*x).
11

%I #54 Oct 16 2015 02:19:23

%S 1,1,-3,-11,57,361,-2763,-24611,250737,2873041,-36581523,-512343611,

%T 7828053417,129570724921,-2309644635483,-44110959165011,

%U 898621108880097,19450718635716001,-445777636063460643,-10784052561125704811,274613643571568682777

%N Expansion of e.g.f. exp(x)/cosh(2*x).

%C A signed version of A001586 (Springer numbers).

%C Equals the logarithmic derivative of A188514 (ignoring the initial term of this sequence); note that the unsigned version (A001586) does not form a logarithmic derivative of an integer sequence.

%H Vincenzo Librandi, <a href="/A188458/b188458.txt">Table of n, a(n) for n = 0..200</a>

%F a(n) = Sum_{k=1..n} -(-1)^(n*k)*C(n, k)*a(n-k) for n>0 with a(0)=1.

%F L.g.f.: log(1+x) = Sum_{n>=1} a(n)*(x^n/n)/(1 + (-1)^n*x)^n.

%F E.g.f.: 1 = Sum_{n>=0} a(n)*exp(-(-1)^n*x)*x^n/n!.

%F G.f.: 1 = Sum_{n>=0} a(n)*x^n/(1 + (-1)^n*x)^(n+1).

%F G.f.: 1 = Sum_{n>=0} a(n)*C(n+m-1,n)*x^n/(1 + (-1)^n*x)^(n+m) for m>=1.

%F a(n) = Sum_{k=0..n} 2^k C(n,k) Euler(k). - _Peter Luschny_

%F a(n) = (-1)^[n/2]*((1+I)/2)^n * Sum_{k=0..n} ((1-I)/(1+I))^k * Sum_{j=0..k} (-1)^(k-j)*C(n+1, k-j)*(2*j+1)^n. - _Peter Bala_

%F O.g.f.: 1/(1-x/(1+4*x/(1-x- 4*x/(1+4*x/(1+x- 6*x/(1+6*x/(1+x- 8*x/(1+8*x/(1+x- 10*x/(1+10*x/(1+x- 12*x/(1+12*x/(1+x- ...))))))))))))) (continued fraction).

%F E.g.f.: E(x) = exp(x)/cosh(2*x) = 2/G(0) where G(k)= 1 -((-1)^k)*3^k/(1 - x/(x + (k+1)*((-1)^k)*3^k/G(k+1))); (continued fraction, 3rd kind, 3-step). - _Sergei N. Gladkovskii_, Jun 07 2012

%F a(n) ~ n! * (cos(n*Pi/2) + sin(n*Pi/2)) * 2^(2*n+3/2) / Pi^(n+1). - _Vaclav Kotesovec_, Oct 07 2013

%F G.f.: conjecture T(0)/(1-x), where T(k) = 1 - 4*x^2*(k+1)^2/(4*x^2*(k+1)^2 + (1-x)^2/T(k+1) ); (continued fraction). - _Sergei N. Gladkovskii_, Nov 12 2013

%F From _Peter Luschny_, Apr 19 2014: (Start)

%F a(n) = 2^n*skp(n, 1/2), where skp(n,x) are the Swiss-Knife polynomials A153641.

%F a(n) = 4^n*E(n, 3/4), where E(n,x) are Euler polynomials.

%F a(n) = (8^n/((n+1)/2))*(B(n+1, 7/8) - B(n+1, 3/8)), where B(n,x) are the Bernoulli polynomials. (End)

%F a(n) = 2^(3*n+1)*(Zeta(-n,3/8)-Zeta(-n,7/8)). - _Peter Luschny_, Oct 15 2015

%e E.g.f.: exp(x)/cosh(2*x) = 1 + x - 3*x^2/2! - 11*x^3/3! + 57*x^4/4! + 361*x^5/5! +...

%e Illustration of other generating functions.

%e E.g.f.: 1 = exp(-x) + exp(x)*x - 3*exp(-x)*x^2/2! - 11*exp(x)*x^3/3! +...

%e L.g.f.: log(1+x) = x/(1-x) - 3*(x^2/2)/(1+x)^2 - 11*(x^3/3)/(1-x)^3 +...

%e G.f.: 1 = 1/(1+x) + 1*x/(1-x)^2 - 3*x^2/(1+x)^3 - 11*x^3/(1-x)^4 +...

%e G.f.: 1 = 1/(1+x)^2 + 1*2*x/(1-x)^3 - 3*3*x^2/(1+x)^4 - 11*4*x^3/(1-x)^5 +...

%e G.f.: 1 = 1/(1+x)^3 + 1*3*x/(1-x)^4 - 3*6*x^2/(1+x)^5 - 11*10*x^3/(1-x)^6 +...

%p seq(4^n*euler(n,3/4), n=0..20); # _Peter Luschny_, Apr 19 2014

%t CoefficientList[Series[E^x/Cosh[2*x], {x, 0, 20}], x]* Range[0, 20]! (* _Vaclav Kotesovec_, Oct 07 2013 *)

%o (PARI) {a(n)=local(X=x+x*O(x^n));n!*polcoeff(exp(X)/cosh(2*X),n)}

%o (PARI) {a(n)=n!*polcoeff(1-sum(k=0, n-1, a(k)*exp(-(-1)^k*x+x*O(x^n))*x^k/k!), n)}

%o (PARI) {a(n)=polcoeff(1-sum(k=0, n-1, a(k)*x^k/(1+(-1)^k*x+x*O(x^n))^(k+1)), n)}

%o (PARI) /* Holds for m>=1: */

%o {a(n)=local(m=1); polcoeff(1-sum(k=0, n-1, a(k)*binomial(m+k-1, k)*x^k/(1+(-1)^k*x+x*O(x^n))^(k+m)), n)/binomial(m+n-1, n)}

%o (PARI) /* Recurrence: */

%o {a(n)=if(n<0,0,if(n==0,1, sum(k=1, n, -(-1)^(n*k)*binomial(n, k)*a(n-k))))}

%o (PARI) {EULER(n)=n!*polcoeff(1/cosh(x+x*O(x^n)),n)}

%o {a(n)=sum(k=0,n,2^k*binomial(n,k)*EULER(k))}

%o (PARI) {a(n)=(-1)^(n\2)*((1+I)/2)^n*sum(k=0, n, ((1-I)/(1+I))^k*sum(j=0, k, (-1)^(k-j)*binomial(n+1, k-j)*(2*j+1)^n))}

%Y Cf. A001586, A188514.

%K sign

%O 0,3

%A _Paul D. Hanna_, Apr 01 2011