login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A354325
Expansion of e.g.f. 1/(1 - x/4 * (exp(2 * x) - 1)).
3
1, 0, 1, 3, 14, 80, 558, 4522, 41864, 436032, 5046680, 64251176, 892361520, 13426491520, 217555171568, 3776935252560, 69942048682112, 1376150998836224, 28669321699355520, 630448829825395840, 14593473117397510400, 354696400190943197184, 9031466708133617225984
OFFSET
0,4
FORMULA
a(0) = 1; a(n) = Sum_{k=2..n} k * 2^(k-3) * binomial(n,k) * a(n-k).
a(n) = n! * Sum_{k=0..floor(n/2)} 2^(n-3*k) * k! * Stirling2(n-k,k)/(n-k)!.
MATHEMATICA
With[{nn=30}, CoefficientList[Series[1/(1-x/4 (Exp[2x]-1)), {x, 0, nn}], x] Range[0, nn]!] (* Harvey P. Dale, Dec 02 2022 *)
PROG
(PARI) my(N=30, x='x+O('x^N)); Vec(serlaplace(1/(1-x/4*(exp(2*x)-1))))
(PARI) a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=sum(j=2, i, j*2^(j-3)*binomial(i, j)*v[i-j+1])); v;
(PARI) a(n) = n!*sum(k=0, n\2, 2^(n-3*k)*k!*stirling(n-k, k, 2)/(n-k)!);
CROSSREFS
KEYWORD
nonn
AUTHOR
Seiichi Manyama, May 24 2022
STATUS
approved