login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A354323
Expansion of e.g.f. exp( x/4 * (exp(2 * x) - 1) ).
2
1, 0, 1, 3, 11, 50, 273, 1687, 11505, 86004, 700445, 6163751, 58148547, 584622766, 6235669629, 70286727435, 834288853217, 10395375065096, 135592878107673, 1846897191981835, 26212412703559515, 386874121137659274, 5927186655133112105, 94108950154465139807
OFFSET
0,4
FORMULA
a(0) = 1; a(n) = Sum_{k=2..n} k * 2^(k-3) * binomial(n-1,k-1) * a(n-k).
a(n) = n! * Sum_{k=0..floor(n/2)} 2^(n-3*k) * Stirling2(n-k,k)/(n-k)!.
PROG
(PARI) my(N=30, x='x+O('x^N)); Vec(serlaplace(exp(x/4*(exp(2*x)-1))))
(PARI) a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=sum(j=2, i, j*2^(j-3)*binomial(i-1, j-1)*v[i-j+1])); v;
(PARI) a(n) = n!*sum(k=0, n\2, 2^(n-3*k)*stirling(n-k, k, 2)/(n-k)!);
CROSSREFS
Cf. A354325.
Sequence in context: A323672 A103466 A346762 * A230961 A203166 A000254
KEYWORD
nonn
AUTHOR
Seiichi Manyama, May 24 2022
STATUS
approved