Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #23 Nov 13 2024 17:22:00
%S 1,0,2,0,3,3,0,9,10,4,0,27,90,21,5,0,81,850,371,36,6,0,243,8050,7077,
%T 1044,55,7,0,729,76250,135779,33300,2365,78,8,0,2187,722250,2606261,
%U 1070244,113311,4654,105,9,0,6561,6841250,50028755,34420356,5476405,312390,8295,136,10
%N Array read by ascending antidiagonals: A(n, k) = Sum_{j=0..k} tan(j*Pi/(1 + 2*k))^(2*n).
%C Based on an observation made by _Fredrik Johansson_ about A376777, which is the main diagonal of this array.
%F Row n of A091042(n, k) = binomial(2*n+1, 2*k) gives the polynomial Pe(n, x), with zeros in -tan(Pi/2*n+1)^2, -tan(2*Pi/2*n+1)^2, ..., -tan(n*Pi/2*n+1)^2. Let Pm(n, k, x) be the polynomial with zeros in (-tan(Pi/2*n+1)^2)^k, (-tan(2*Pi/2*n+1)^2)^k, ..., (-tan(n*Pi/2*n+1)^2)^k, then A(k, n) is the coefficient of X^(n-1) in the polynomial Pm(n, k, x). A way to do this calculation without evaluation of irrational numbers is to obtain the companion matrix M of the polynomial Pe(n, x), then A(k, n) = tr(M^k) (the trace of M^k). - _Thomas Scheuerle_, Nov 11 2024
%e Array begins
%e [0] 1, 2, 3, 4, 5, 6, ... A000027
%e [1] 0, 3, 10, 21, 36, 55, ... A014105
%e [2] 0, 9, 90, 371, 1044, 2365, ... A377858
%e [3] 0, 27, 850, 7077, 33300, 113311, ... A376778
%e [4] 0, 81, 8050, 135779, 1070244, 5476405, ...
%e [5] 0, 243, 76250, 2606261, 34420356, 264893255, ...
%e [6] 0, 729, 722250, 50028755, 1107069876, 12813875437, ...
%e [7] 0, 2187, 6841250, 960335173, 35607151476, 619859803695, ...
%e .
%e Seen as a triangle T(n, k) = A(n-k, k):
%e [0] 1;
%e [1] 0, 2;
%e [2] 0, 3, 3;
%e [3] 0, 9, 10, 4;
%e [4] 0, 27, 90, 21, 5;
%e [5] 0, 81, 850, 371, 36, 6;
%e [6] 0, 243, 8050, 7077, 1044, 55, 7;
%e [7] 0, 729, 76250, 135779, 33300, 2365, 78, 8;
%e [8] 0, 2187, 722250, 2606261, 1070244, 113311, 4654, 105, 9;
%p A := (n, k) -> add(tan(j*Pi/(1 + 2*k))^(2*n), j = 0..k):
%p seq(print(seq(round(evalf(A(n, k), 32)), k = 0..6)), n = 0..7);
%o (PARI)
%o A(n, k) = {trace(matcompanion(sum(m=0, k, x^m*binomial(2*k+1, 2*(k-m))*(-1)^(m+1)))^n)+(n==0) } \\ _Thomas Scheuerle_, Nov 11 2024
%Y Rows: A000027, A014105, A377858, A376778.
%Y Columns: A376478.
%Y Cf. A376777 (main diagonal), A377658 (antidiagonal sums).
%Y Cf. A091042.
%K nonn,tabl
%O 0,3
%A _Peter Luschny_, Nov 10 2024