login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A080834
E.g.f. exp( x/(1 - x - x^2) ) / (1 - x - x^2).
0
1, 2, 9, 58, 485, 4986, 60517, 846434, 13384233, 235915570, 4583337761, 97257637962, 2237249019469, 55438067438378, 1471848284860605, 41673308546595826, 1253228243522934737, 39886741017817705314
OFFSET
0,2
FORMULA
E.g.f.: exp(x/(1-x-x^2))/(1-x-x^2).
D-finite with recurrence a(n) = 2*n*a(n-1) + (n-1)^2*a(n-2) - 2*(n-2)^2*(n-1)*a(n-3) - (n-3)*(n-2)^2*(n-1)*a(n-4). - Vaclav Kotesovec, Sep 29 2013
a(n) ~ 5^(-3/8)*sqrt(7+3*sqrt(5))/2 * ((1+sqrt(5))/2)^(n-1)* exp(2*sqrt(n)/5^(1/4)-n-1/10) * n^(n+1/4) * (1 + sqrt(-73/600 + 293329/(288000*sqrt(5)))/sqrt(n)). - Vaclav Kotesovec, Sep 29 2013
MATHEMATICA
CoefficientList[Series[E^(x/(1-x-x^2))/(1-x-x^2), {x, 0, 20}], x]* Range[0, 20]! (* Vaclav Kotesovec, Sep 29 2013 *)
CROSSREFS
Sequence in context: A132608 A361598 A247329 * A059115 A277358 A156129
KEYWORD
easy,nonn
AUTHOR
Emanuele Munarini, Mar 28 2003
STATUS
approved