login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A277358
Number of self-avoiding planar walks starting at (0,0), ending at (n,0), remaining in the first quadrant and using steps (0,1), (1,0), (1,1), (-1,1), and (1,-1).
7
1, 2, 9, 58, 491, 5142, 64159, 929078, 15314361, 283091122, 5799651689, 130423248378, 3193954129651, 84607886351462, 2410542221526399, 73500777054712438, 2388182999073694001, 82374234401380995042, 3006071549433968619529, 115713455097715665452858
OFFSET
0,2
LINKS
FORMULA
E.g.f.: exp(-x/2)/(1-2*x)^(5/4).
a(n) = 2*n*a(n-1) + (n-1)*a(n-2) for n>1, a(0)=1, a(1)=2.
a(n) ~ sqrt(Pi) * 2^(n+5/2) * n^(n+3/4) / (Gamma(1/4) * exp(n+1/4)). - Vaclav Kotesovec, Oct 13 2016
MAPLE
a:= n-> n!*coeff(series(exp(-x/2)/(1-2*x)^(5/4), x, n+1), x, n):
seq(a(n), n=0..25);
# second Maple program:
a:= proc(n) option remember; `if`(n<2, n+1,
2*n*a(n-1) +(n-1)*a(n-2))
end:
seq(a(n), n=0..25);
MATHEMATICA
a[n_] := a[n] = If[n < 2, n+1, 2*n*a[n-1] + (n-1)*a[n-2]];
Table[a[n], {n, 0, 25}] (* Jean-François Alcover, Mar 29 2017, translated from Maple *)
CROSSREFS
KEYWORD
nonn,walk
AUTHOR
Alois P. Heinz, Oct 10 2016
STATUS
approved