login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of self-avoiding planar walks starting at (0,0), ending at (n,0), remaining in the first quadrant and using steps (0,1), (1,0), (1,1), (-1,1), and (1,-1).
7

%I #20 Oct 22 2018 08:58:09

%S 1,2,9,58,491,5142,64159,929078,15314361,283091122,5799651689,

%T 130423248378,3193954129651,84607886351462,2410542221526399,

%U 73500777054712438,2388182999073694001,82374234401380995042,3006071549433968619529,115713455097715665452858

%N Number of self-avoiding planar walks starting at (0,0), ending at (n,0), remaining in the first quadrant and using steps (0,1), (1,0), (1,1), (-1,1), and (1,-1).

%H Alois P. Heinz, <a href="/A277358/b277358.txt">Table of n, a(n) for n = 0..403</a>

%F E.g.f.: exp(-x/2)/(1-2*x)^(5/4).

%F a(n) = 2*n*a(n-1) + (n-1)*a(n-2) for n>1, a(0)=1, a(1)=2.

%F a(n) ~ sqrt(Pi) * 2^(n+5/2) * n^(n+3/4) / (Gamma(1/4) * exp(n+1/4)). - _Vaclav Kotesovec_, Oct 13 2016

%p a:= n-> n!*coeff(series(exp(-x/2)/(1-2*x)^(5/4), x, n+1), x, n):

%p seq(a(n), n=0..25);

%p # second Maple program:

%p a:= proc(n) option remember; `if`(n<2, n+1,

%p 2*n*a(n-1) +(n-1)*a(n-2))

%p end:

%p seq(a(n), n=0..25);

%t a[n_] := a[n] = If[n < 2, n+1, 2*n*a[n-1] + (n-1)*a[n-2]];

%t Table[a[n], {n, 0, 25}] (* _Jean-François Alcover_, Mar 29 2017, translated from Maple *)

%Y Cf. A277359, A277360, A277424, A284230, A317985.

%K nonn,walk

%O 0,2

%A _Alois P. Heinz_, Oct 10 2016