login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A317985
Number of self-avoiding planar walks starting at (0,0), ending at (n,0), remaining in the first quadrant and using steps (0,1), (1,0), (1,1), (-1,1), and (1,-1) such that (0,1) is never used directly before or after (1,0) or (1,1).
3
1, 2, 7, 38, 284, 2691, 30890, 416449, 6448243, 112751661, 2197200541, 47214026822, 1109022356759, 28269085769331, 777140210643254, 22918982645377342, 721764216387297451, 24173661551378798838, 857993099925433301350, 32168967331652245055171
OFFSET
0,2
LINKS
FORMULA
a(n) ~ c * 2^n * n! / n^(1/4), where c = 1.054816768531988358301631965137203014379828345839423725829486842843413035459... - Vaclav Kotesovec, May 14 2020
MAPLE
a:= proc(n) option remember; `if`(n<4, [1, 2, 7, 38][n+1],
2*n*a(n-1) -(n-2)*a(n-2) -(2*n-5)*a(n-3))
end:
seq(a(n), n=0..25);
MATHEMATICA
a = DifferenceRoot[Function[{y, n}, {(2n+1) y[n] + (n+1) y[n+1] + (-2n-6)* y[n+2] + y[n+3] == 0, y[0] == 1, y[1] == 2, y[2] == 7, y[3] == 38}]];
Table[a[n], {n, 0, 25}] (* Jean-François Alcover, May 12 2020, after Maple *)
nmax = 20; CoefficientList[Simplify[Normal[Series[-1 - 1/x^(3/4) * E^(-1/(2*x) + (3*ArcTanh[(1 + 4*x)/Sqrt[17]])/(4*Sqrt[17]))* (-2 + x + 2*x^2)^(1/8) * Integrate[E^(1/(2*x)) * Simplify[Normal[Series[(-2 + 2*x + x^2)/(x^(5/4)*(-2 + x + 2*x^2)^(9/8))/ E^(3*ArcTanh[(1 + 4*x)/Sqrt[17]] / (4*Sqrt[17])), {x, 0, nmax}]], x > 0], x], {x, 0, nmax}]], x > 0], x] (* Vaclav Kotesovec, May 14 2020 *)
CROSSREFS
Sequence in context: A088792 A114160 A145159 * A084552 A094664 A001858
KEYWORD
nonn,walk
AUTHOR
Alois P. Heinz, Oct 02 2018
STATUS
approved