OFFSET
0,2
LINKS
Alois P. Heinz, Table of n, a(n) for n = 0..403
FORMULA
a(n) ~ c * 2^n * n! / n^(1/4), where c = 1.054816768531988358301631965137203014379828345839423725829486842843413035459... - Vaclav Kotesovec, May 14 2020
MAPLE
a:= proc(n) option remember; `if`(n<4, [1, 2, 7, 38][n+1],
2*n*a(n-1) -(n-2)*a(n-2) -(2*n-5)*a(n-3))
end:
seq(a(n), n=0..25);
MATHEMATICA
a = DifferenceRoot[Function[{y, n}, {(2n+1) y[n] + (n+1) y[n+1] + (-2n-6)* y[n+2] + y[n+3] == 0, y[0] == 1, y[1] == 2, y[2] == 7, y[3] == 38}]];
Table[a[n], {n, 0, 25}] (* Jean-François Alcover, May 12 2020, after Maple *)
nmax = 20; CoefficientList[Simplify[Normal[Series[-1 - 1/x^(3/4) * E^(-1/(2*x) + (3*ArcTanh[(1 + 4*x)/Sqrt[17]])/(4*Sqrt[17]))* (-2 + x + 2*x^2)^(1/8) * Integrate[E^(1/(2*x)) * Simplify[Normal[Series[(-2 + 2*x + x^2)/(x^(5/4)*(-2 + x + 2*x^2)^(9/8))/ E^(3*ArcTanh[(1 + 4*x)/Sqrt[17]] / (4*Sqrt[17])), {x, 0, nmax}]], x > 0], x], {x, 0, nmax}]], x > 0], x] (* Vaclav Kotesovec, May 14 2020 *)
CROSSREFS
KEYWORD
nonn,walk
AUTHOR
Alois P. Heinz, Oct 02 2018
STATUS
approved