login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A094664
Row sums of triangle A094344.
5
1, 1, 2, 7, 38, 286, 2756, 32299, 444998, 7038898, 125620652, 2495811814, 54618201884, 1305184303996, 33812846036552, 943878836768947, 28242424937855558, 901709392642750186, 30597227032818965276, 1099566630423067201234, 41718229482624755005748
OFFSET
0,3
LINKS
FORMULA
a(n) = Sum_{k = 0..n} A094344(n, k).
From Gary W. Adamson, Jul 26 2011: (Start)
a(n) = upper left term in M^n, a(n+1) = sum of top row terms in M^n; M = the following infinite square production matrix:
1, 1, 0, 0, 0, ...
1, 1, 3, 0, 0, ...
1, 1, 1, 5, 0, ...
1, 1, 1, 1, 7, ...
... (End)
G.f.: 1/(1 - x/(1 - x/(1 - 3*x/(1 - 3*x/(1 - 5*x/(1 - 5*x/(1 - 7*x/(1 - 7*x/(1-...))))))))) (continued fraction). - Paul D. Hanna, Sep 17 2011
G.f. A(x) satisfies A(x) = 1 + x*(2*A(x)-A(x)^2) + 2*x^2*A'(x). - Paul D. Hanna, Mar 09 2013
From Sergei N. Gladkovskii, Oct 15 2012 - Aug 14 2013: (Start)
Continued fractions:
G.f.: 1/U(0) where U(k) = 1 - x*(2*k+1)/(1 - x*(2*k+1)/U(k+1)).
G.f.: 2 - 1/Q(0) where Q(k) = 1 - x*(2*k-1)/(1 - x*(2*k+3)/Q(k+1) ).
G.f.: Q(0)/x - 1/x, where Q(k) = 1 - x*(2*k-1)/(1 - x*(2*k+1)/Q(k+1)).
G.f.: 2/G(0), where G(k) = 1 + 1/(1 - x*(4*k+2)/(x*(4*k+2)-1+ x*(4*k+2)/G(k+1))).
G.f.: G(0)/2/x - 1/x + 2, where G(k) = 1 + 1/(1 - 2*x*(2*k+1)/(2*x*(2*k+1) - 1 + 2*x*(2*k-1)/G(k+1))).
G.f.: G(0), where G(k) = 1-x*(2*k+1)/(x*(2*k+1)-1/(1-x*(2*k+1)/(x*(2*k+1)- 1/G(k+1)))).
G.f.: 2 - 1/x - G(0)/x, where G(k) = 2*x - 2*x*k - 1 - x*(2*k-1)/G(k+1).
(End)
a(n) ~ 2^n * (n-1)! / Pi. - Vaclav Kotesovec, Sep 05 2017
Conjecture: a(n) = R(n-1, 0) for n > 0 with a(0) = 1 where R(n, q) = (2*q + 1)*R(n-1, q+1) + Sum_{j=0..q} R(n-1, j) for n > 0, q >= 0 with R(0, q) = 1 for q >= 0. - Mikhail Kurkov, Jun 19 2023
EXAMPLE
a(3) = 7, a(4) = 38, since top row of M^3 = (7, 7, 9, 15) with 38 = (7 + 7 + 9 + 15).
MATHEMATICA
nmax = 20; CoefficientList[Series[1/Fold[(1 - #2/#1) &, 1, Reverse[(2*Range[nmax + 1] - 2*Floor[Range[nmax + 1]/2] - 1)*x]], {x, 0, nmax}], x] (* Vaclav Kotesovec, Sep 05 2017 *)
PROG
(PARI) {a(n)=local(CF=1+x*O(x^n)); for(k=0, n, CF=1/(1-(2*n-2*k+1)*x/(1-(2*n-2*k+1)*x*CF))); polcoeff(CF, n, x)} /* Paul D. Hanna, Sep 17 2011 */
(PARI) {a(n)=local(A=1+x); for(i=1, n, A=1+x*(2*A-A^2)+2*x^2*A'+x*O(x^n)); polcoeff(A, n)} \\ Paul D. Hanna, Mar 09 2013
CROSSREFS
Sequence in context: A145159 A317985 A084552 * A001858 A233335 A000366
KEYWORD
easy,nonn
AUTHOR
Philippe Deléham, Jun 06 2004
STATUS
approved