login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Row sums of triangle A094344.
5

%I #61 Apr 26 2024 06:57:18

%S 1,1,2,7,38,286,2756,32299,444998,7038898,125620652,2495811814,

%T 54618201884,1305184303996,33812846036552,943878836768947,

%U 28242424937855558,901709392642750186,30597227032818965276,1099566630423067201234,41718229482624755005748

%N Row sums of triangle A094344.

%H Alois P. Heinz, <a href="/A094664/b094664.txt">Table of n, a(n) for n = 0..200</a>

%F a(n) = Sum_{k = 0..n} A094344(n, k).

%F From _Gary W. Adamson_, Jul 26 2011: (Start)

%F a(n) = upper left term in M^n, a(n+1) = sum of top row terms in M^n; M = the following infinite square production matrix:

%F 1, 1, 0, 0, 0, ...

%F 1, 1, 3, 0, 0, ...

%F 1, 1, 1, 5, 0, ...

%F 1, 1, 1, 1, 7, ...

%F ... (End)

%F G.f.: 1/(1 - x/(1 - x/(1 - 3*x/(1 - 3*x/(1 - 5*x/(1 - 5*x/(1 - 7*x/(1 - 7*x/(1-...))))))))) (continued fraction). - _Paul D. Hanna_, Sep 17 2011

%F G.f. A(x) satisfies A(x) = 1 + x*(2*A(x)-A(x)^2) + 2*x^2*A'(x). - _Paul D. Hanna_, Mar 09 2013

%F From _Sergei N. Gladkovskii_, Oct 15 2012 - Aug 14 2013: (Start)

%F Continued fractions:

%F G.f.: 1/U(0) where U(k) = 1 - x*(2*k+1)/(1 - x*(2*k+1)/U(k+1)).

%F G.f.: 2 - 1/Q(0) where Q(k) = 1 - x*(2*k-1)/(1 - x*(2*k+3)/Q(k+1) ).

%F G.f.: Q(0)/x - 1/x, where Q(k) = 1 - x*(2*k-1)/(1 - x*(2*k+1)/Q(k+1)).

%F G.f.: 2/G(0), where G(k) = 1 + 1/(1 - x*(4*k+2)/(x*(4*k+2)-1+ x*(4*k+2)/G(k+1))).

%F G.f.: G(0)/2/x - 1/x + 2, where G(k) = 1 + 1/(1 - 2*x*(2*k+1)/(2*x*(2*k+1) - 1 + 2*x*(2*k-1)/G(k+1))).

%F G.f.: G(0), where G(k) = 1-x*(2*k+1)/(x*(2*k+1)-1/(1-x*(2*k+1)/(x*(2*k+1)- 1/G(k+1)))).

%F G.f.: 2 - 1/x - G(0)/x, where G(k) = 2*x - 2*x*k - 1 - x*(2*k-1)/G(k+1).

%F (End)

%F a(n) ~ 2^n * (n-1)! / Pi. - _Vaclav Kotesovec_, Sep 05 2017

%F Conjecture: a(n) = R(n-1, 0) for n > 0 with a(0) = 1 where R(n, q) = (2*q + 1)*R(n-1, q+1) + Sum_{j=0..q} R(n-1, j) for n > 0, q >= 0 with R(0, q) = 1 for q >= 0. - _Mikhail Kurkov_, Jun 19 2023

%e a(3) = 7, a(4) = 38, since top row of M^3 = (7, 7, 9, 15) with 38 = (7 + 7 + 9 + 15).

%t nmax = 20; CoefficientList[Series[1/Fold[(1 - #2/#1) &, 1, Reverse[(2*Range[nmax + 1] - 2*Floor[Range[nmax + 1]/2] - 1)*x]], {x, 0, nmax}], x] (* _Vaclav Kotesovec_, Sep 05 2017 *)

%o (PARI) {a(n)=local(CF=1+x*O(x^n)); for(k=0, n, CF=1/(1-(2*n-2*k+1)*x/(1-(2*n-2*k+1)*x*CF))); polcoeff(CF, n, x)} /* _Paul D. Hanna_, Sep 17 2011 */

%o (PARI) {a(n)=local(A=1+x);for(i=1,n,A=1+x*(2*A-A^2)+2*x^2*A'+x*O(x^n));polcoeff(A,n)} \\ _Paul D. Hanna_, Mar 09 2013

%K easy,nonn

%O 0,3

%A _Philippe Deléham_, Jun 06 2004