login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A233335 E.g.f. A(x) satisfies: A( Integral 1/A(x) dx ) = exp(x). 4
1, 1, 2, 7, 38, 292, 2975, 38350, 604433, 11351659, 249042701, 6283114723, 179995680530, 5794486077958, 207806806310354, 8241414107222095, 359171801820266717, 17107537203463252273, 886296777786378900077, 49732564234138336160086, 3011177123882906437153214, 196063383282648338166793297 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

LINKS

Paul D. Hanna, Table of n, a(n) for n = 0..160

FORMULA

E.g.f. satisfies: A(x) = exp( Series_Reversion( Integral 1/A(x) dx ) ).

E.g.f.: exp(G(x)) where G(x) = exp(G(G(x))) is the e.g.f. of A214645.

EXAMPLE

E.g.f.: A(x) = 1 + x + 2*x^2/2! + 7*x^3/3! + 38*x^4/4! + 292*x^5/5! + 2975*x^6/6! +...

Related expansions.

Integral 1/A(x) dx = x - x^2/2! - x^4/4! - 6*x^5/5! - 52*x^6/6! - 591*x^7/7! - 8404*x^8/8! +...

The series reversion of Integral 1/A(x) dx equals log(A(x)) and begins:

log(A(x)) = x + x^2/2! + 3*x^3/3! + 16*x^4/4! + 126*x^5/5! + 1333*x^6/6! + 17895*x^7/7! + 293461*x^8/8! +...+ A214645(n)*x^n/n! +...

and equals the e.g.f. of A214645.

PROG

(PARI) {a(n)=local(A=1+x+x*O(x^n)); for(i=1, n, A=exp(serreverse(intformal(1/A+x*O(x^n))))); n!*polcoeff(A, n)}

for(n=0, 30, print1(a(n), ", "))

CROSSREFS

Cf. A233336, A214645 (log).

Sequence in context: A084552 A094664 A001858 * A000366 A106211 A222034

Adjacent sequences:  A233332 A233333 A233334 * A233336 A233337 A233338

KEYWORD

nonn

AUTHOR

Paul D. Hanna, Dec 07 2013

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified February 19 03:37 EST 2018. Contains 299330 sequences. (Running on oeis4.)