login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A088792
Expansion of g.f. A(x) satisfying A(x)^2 = A(x*A(x)) / (1-x) with A(0) = 1.
3
1, 1, 2, 7, 38, 279, 2535, 27106, 330998, 4526827, 68402684, 1130591607, 20282026273, 392427087780, 8146462590683, 180629845193090, 4261044215912232, 106571080784076813, 2817142524095598771
OFFSET
0,3
COMMENTS
Note that if F(x)^2 = F(x*F(x)) / (1-x) with F(0) = 0, then F(x) is the g.f. of A367387. - Paul D. Hanna, Jan 08 2024
LINKS
FORMULA
a(n) ~ c * n^(n + log(2)) / (exp(n) * (log(2))^n), where c = 0.9415987277996... . - Vaclav Kotesovec, Aug 08 2014
From Paul D. Hanna, Jan 08 2024: (Start)
G.f. A(x) = Sum_{n>=0} a(n)*x^n and B(x) = x*A(x) satisfies the following formulas.
(1) A(x)^2 = A(x*A(x)) / (1-x).
(2) A(x) = x / ((1-x)^(1/2) * (1 - B(x))^(1/4) * (1 - B(B(x)))^(1/8) * (1 - B(B(B(x))))^(1/16) * (1 - B(B(B(B(x)))))^(1/32) * ...), an infinite product involving iterations of B(x) = x*A(x).
The iterations of B(x) = x*A(x) begin
(3.a) B(B(x)) = x*(1-x) * A(x)^3.
(3.b) B(B(B(x))) = x*(1-x)^3 * (1 - x*A(x)) * A(x)^7.
(3.c) B(B(B(B(x)))) = x*(1-x)^7 * (1 - x*A(x))^3 * (1 - x*(1-x)*A(x)^3) * A(x)^15.
(3.d) B(B(B(B(B(x))))) = x*(1-x)^15 * (1 - x*A(x))^7 * (1 - x*(1-x)*A(x)^3)^3 * (1 - x*(1-x)^3*(1-x*A(x))*A(x)^7) * A(x)^31.
The compositions of g.f. A(x) with the iterations of B(x) = x*A(x) begin
(4.a) A(B(x)) = (1-x) * A(x)^2.
(4.b) A(B(B(x))) = (1-x)^2 * (1 - x*A(x)) * A(x)^4.
(4.c) A(B(B(B(x)))) = (1-x)^4 * (1 - x*A(x))^2 * (1 - x*(1-x)*A(x)^3) * A(x)^8.
(4.d) A(B(B(B(B(x))))) = (1-x)^8 * (1 - x*A(x))^4 * (1 - x*(1-x)*A(x)^3)^2 * (1 - x*(1-x)^3*(1-x*A(x))*A(x)^7) * A(x)^16.
(End)
EXAMPLE
A(x) = 1 + x + 2*x^2 + 7*x^3 + 38*x^4 + 279*x^5 + 2535*x^6 +...
A(x)^2 = 1 + 2*x + 5*x^2 + 18*x^3 + 94*x^4 + 662*x^5 + 5829*x^6 +...
A(x*A(x)) = 1 + x + 3*x^2 + 13*x^3 + 76*x^4 + 568*x^5 + 5167*x^6 +...
PROG
(PARI) {a(n)=local(A, m); if(n<1, n==0, m=1; A=1+x; for(i=1, n, A=subst(A, x, x*A+x*O(x^n))/(1-x)/A); polcoeff(A, n))}
for(n=0, 20, print1(a(n), ", "))
CROSSREFS
Sequence in context: A032109 A368232 A337026 * A114160 A145159 A317985
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Oct 16 2003; corrected Jun 05 2006
STATUS
approved